• 제목/요약/키워드: water/methanol separation

검색결과 143건 처리시간 0.02초

Pervaporation separation of polyion complex composite membranes for the separation of water/alcohol mixtures: characterization of permeation behavior by using molecular modeling techniques

  • Kim, Sang-Gyun;Lee, Yoon-Gyu;Jonggeon Jegal;Lee, Kew-Ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.91-94
    • /
    • 2003
  • In this work, the physicochemical properties for permeant molecules and polyion complex membrane prepared by complexation between SA and chitosan were determined by using molecular modeling methods, and the permeation behaviors of water and alcohol molecules through the PIC membrane have been investigated. In the case of penetrant molecule, the experimental results showed that the prepared membrane was excellent pervaporation performance result in most solution, and the selectivity and permeability of the membrane were dependent on the molecular size, the polarity and the hydrophilic surface of permeant organics. However, the separation behavior of methanol aqueous solution exhibited other permeation tendency with other feed solutions and contradictory result. That is, the membrane were preferentially permeable to methanol over water despite water molecule has stronger polarity and small molecular size than methanol molecule. In this study, the results were discussed from the viewpoint of chemical and physical properties between permeant molecules and membrane in the diffusion state.

  • PDF

Silica막 반응기를 이용한 Dimethyl Ether 합성에 관한 연구 (Study on Synthesis of Dimethyl Ether Using Silica Membrane Reactor)

  • 서봉국;윤민영;이규호
    • 멤브레인
    • /
    • 제15권4호
    • /
    • pp.330-337
    • /
    • 2005
  • [ $250^{\circ}C$의 고온에서 수증기 선택 투과 특성을 가지는 silica 막을 메탄을 탈수에 의한 dimethyl ether (DME) 합성 반응에 분리막 반응기로 적용하였다. Silica 전구체로서 tetraethoxysilane (TEOS)을 이용하여 초음파 분무 열분해 및 기상화학 증착법(CVD)법 등에 의해 다공성 스테인레스 스틸(SUS)에 silica 막을 합성하였다. CVD법에 의해 합성한 silica막의 수증기 투과도 및 메탄올에 대한 분리계수 상관관계 trade-off 선이 열분해 silica 막보다 높이 존재하였다. 수증기 투과도가 $1.2\times10^{-7}\;mol\;{\cdot}\;m^{-2}\;{\cdot}\;S^{-1}\;{\cdot}\;Pa^{-1}$ 이상이고, 메탄올에 대한 분리계수가 10 이상의 성능을 가지는 분리막 반응기에 대해서 기존 반응기 대비 $20\%$ 이상 메탄을 전환율이 향상되었다. 고온 수증기 선택성 silica 막이 메탄을 탈수 반응에 의해 생성되는 수증기를 제거함으로서 촉매 활성 저하를 억제하여 반응 전환율을 개선시키는 막 반응기로서의 효과를 확인할 수 있었다.

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

제올라이트 4A 분리막을 이용한 물/메탄올, 물/부탄올 혼합물의 투과증발 특성 연구: 실험 및 모형 (Pervaporation of binary Water/Methanol and Water/Butanol Mixtures through Zeolite 4A Membranes: Experiments and Modeling)

  • 오웅진;정재칠;여정구;이정현;김현욱;박영철;이동호;문종호;조철희
    • 멤브레인
    • /
    • 제27권6호
    • /
    • pp.487-498
    • /
    • 2017
  • 본 연구에서는 (주)파인텍에서 제조한 제올라이트 4A 분리막을 이용하여 물/메탄올, 물/부탄올 혼합물의 투과증발실험을 수행하였다. 분리막을 투과한 기체분자들은 액체질소트랩을 이용하여 포집하였으며, 기체크로마토그래피(TCD)를 이용하여 혼합물의 조성을 분석하였다. 실험을 통해 물과 메탄올(분리계수 최대 250 이상), 물과 부탄올(분리계수 최대 1,500 이상)의 혼합물에서 선택적으로 물을 분리하는 것을 확인하였다. GMS (generalized Maxwell Stefan) 이론을 적용하여 2성분계의 투과증발 거동을 모사하였으며, 상수추정을 통하여 제올라이트 비지지체의 흡착상수 및 확산상수를 구하였다. 제올라이트 4A 분리막의 경우 기공의 크기가 물보다는 크고, 메탄올, 부탄올 보다는 작기 때문에, 알코올로부터 물을 분리시키는 공정에 적용시킬 수 있다. 바이오 에탄올 분리, 부탄올 분리, 막반응기, 하이브리드 반응-탈수 공정 등에 적용할 수 있을 것으로 사료된다.

저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用)(I) -저압폭쇄처리(低壓爆碎處理) 및 목재주성분(木材主成分)의 분리(分離)- (The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (I) -Low Pressure Steaming Explosion and Separation of Wood Main Components-)

  • 엄찬호;엄태진;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.30-36
    • /
    • 1993
  • Wood chips of oak (Quercus mongolica) and larch (Larix leptolepis) were treated with a relatively low pressure steam(10~20 kg/$cm^2$) for 10~20 min (first-stage),and then increased pressure up to 30kg/$cm^2$ for 30 second (second-stage), and steam pressure was released intentionally to air. Main components of exploded wood were separated with 1% NaOH and hot water-methanol. In this work, the more effective low pressure explosion condition and separation method of wood main component were investigated. The results can be summarized as follows; 1. The yields of exploded wood were generally decreased with increasing steam pressure and reaction time. 2. The proper condition of steam explosion in low pressure for the separation of wood main components was 15kg/$cm^2$-10 min, in oak wood and 20kg/$cm^2$-10 min., then 30kg/$cm^2$-0.5 min, in larch wood. 3. The 23% of elude hemicellulose was obtained from the exploded oak wood which was treated with optimal condition. 4. In the case of hot water-methanol extraction, the ratio of delignification was 14~23% in the exploded larch wood and 42~55% in the exploded oak wood. 5. The methanol was more effective than 1% sodium hydroxide solution for extraction of lignin from exploded wood.

  • PDF

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Separation of Madecassoside and Madecassic Acid Isomers by High Performance Liquid Chromatography Using β -Cyclodextrin as Mobile Phase Additive

  • Kai, Guiqing;Pan, Jian;Yuan, Chuanxun;Yuan, Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.551-554
    • /
    • 2008
  • An improved HPLC method for the separation of madecassoside isomers (madecassoside and asiaticoside-B) has been developed. The isomers can be separated with high resolution from extracts of Centella asiatica by HPLC using $\beta$-cyclodextrin as a mobile phase added on a $C_{18}$ column. The result shows that the isomers can be separated with a mobile phase consisting of methanol:water (50:50, v/v) with 4 mmol/L $\beta$-CD. To elucidate the mechanism of the separation of madecassoside and asiaticoside-B, this paper studied the separation of their aglycon parts (madecassic acid and terminolic acid), another pair of isomers. The isomers can also be separated with high resolution with a mobile phase consisting of methanol:water (65:35, v/v) with 4 mmol/L $\beta$-CD and the pH of the mobile phase was adjusted to 4. The paper also studied the separation of the two isomers by HPLC using $\alpha$-CD and Glucosyl-$\beta$-CD as a mobile phase additive in order to elucidate the mechanism of the separation process.

Design and control of extractive distillation for the separation of methyl acetate-methanol-water

  • Wang, Honghai;Ji, Pengyu;Cao, Huibin;Su, Weiyi;Li, Chunli
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2336-2347
    • /
    • 2018
  • The azeotrope of methyl acetate methanol and water was isolated using extractive distillation with water as entrainer. The pressure-swing extractive distillation (PSED) process and vapor side-stream distillation column (VSDC) with the rectifier process were designed to separate the methyl acetate, methanol and water mixture. It was revealed that the VSDC with the rectifier process had a reduction in energy consumption than the PSED process. Four control schemes of the two process were investigated: Double temperature control scheme (CS1), $Q_R/F$ feedforward control of reboiler duty scheme for PESD (CS2), $Q_R/F$ feedback control scheme for VSDC (CS3), the feedback control scheme of sensitive plate temperature of side-drawing distillation column to dominate the compressor shaft speed (CS4). Feed flow and composition disturbance were used to evaluate the dynamic performance. As a result, CS4 is a preferable choice for separation of methyl acetate-methanol-water mixture. A control scheme combining the operating parameters of dynamic equipment with the control indicators of static equipment was proposed in this paper. It means using the sensitive plate temperature of side-drawing column to control the compressor shaft speed. This is a new control scheme for extractive distillation.

초음파 분무 열분해법에 의해 합성한 실리카 막의 기체 투과 특성 (Gas Permeation Characteristics of Silica Membrane Prepared by Ultrasonic Spray Pyrolysis)

  • 이규호;윤민영;박상진;이동욱;서봉국
    • 멤브레인
    • /
    • 제15권2호
    • /
    • pp.105-113
    • /
    • 2005
  • 표면 개질한 다공성 금속 지지체에 초음파 분무 열분해법을 이용하여 silica막을 합성하고, 고온 기체 선택 투과 분리 특성을 조사하였다. Tetraethyl orthosilicate (TEOS)를 전구체로 하여 지지체 세공을 통한 감압 진공을 하면서 873K에서 표면에 defect 없이 균일한 양질의 silica막이 형성되었다. 투과 온도 523 K에서 silica막의 수th/질소 및 수증기/메탄을 분리 계수가 각각 17 및 16 정도의 우수한 선택 투과 성능을 나타냈다. 다공성 금속 지지체의 불균일한 기공에 silica 분체 및 $\gamma-alumina$층을 중간층으로 도입하고, 그 위에 열분해법에 의한 silica를 합성한 결과, Knudsen 확산에 의한 투과 영역의 세공이 완전히 제거되어 높은 수소 및 수증기 선택성을 가지는 복합 막이 형성되었다.

Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application

  • Kim, Dong-Hwee;Kim, Sung-Chul
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.457-466
    • /
    • 2008
  • The relation between the phase separated morphologies and their transport properties in the polymer blend membrane for direct methanol fuel cell application was studied. In order to enhance the proton conductivity and reduce the methanol crossover, sulfonated poly(arylene ether sulfone) copolymer, with a sulfonation of 60 mol% (sPAES-60), was blended with nonsulfonated poly(ether sulfone) copolymer (RH-2000, Solvay). Various morphologies were obtained by varying the drying condition and the concentration of the casting solution (10, 15, 20 wt%). The transport properties of proton and methanol molecule through the polymer blend membranes were studied according to the absorbed water. AC impedance spectroscopy was used to measure the proton conductivity and a liquid permeability measuring instrument was designed to measure the methanol permeability. The state of water in the blend membranes was confirmed by differential scanning calorimetry and was used to correlate the morphology of the membrane with the membrane transport properties.