• 제목/요약/키워드: water/binder ratio

검색결과 487건 처리시간 0.029초

천연 결합재를 사용한 황토경화체의 물성에 대한 연구 (Physical Properties of the Hardened Loess Using Natural Binding Materials)

  • 김진석;오영훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.44-51
    • /
    • 2012
  • 본 연구에서는 황토에 시멘트나 유기계 접착제를 첨가하지 않은 천연재료 황토결합재를 사용하여 황토경화체를 제작하고, 배합조건에 따른 강도성상을 평가하였다. 황토와 석회의 결합재에 천연재료를 첨가할 경우 사용한 천연재료는 모두 물리적 성능을 개선하는 효과가 있었다. 천연재료 중에서 석회는 황토경화체의 물성을 증가시키는데 가장 큰 영향을 미치고 있다. 황토경화체의 물리적 특성은 적용한 배합비 중에서 W/B 45%, 단위수량 $285kg/m^3$, 석회첨가율 60%일 때 가장 우수하게 나타나고 있다.

An empirical relationship for compressive strength of preplaced aggregate concrete with modified binder

  • Kunal Krishna Das;Eddie Siu-Shu Lam;Jeong Gook Jang
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.545-559
    • /
    • 2023
  • In this study, an experimental investigation was conducted to assess the influence of ground granulated blast furnace slag (GGBS) and silica fume (SF) on the fresh and hardened properties of grout specimens and preplaced aggregate concrete (PAC). Grout proportions were optimized statistically using a factorial design and were applied to 10 mm and 20 mm coarse aggregates to produce PAC. The results demonstrate that GGBS has a more significant effect on the compressive strength of grout compared to SF, with a small increase or decrease in the GGBS content having a greater influence on the compressive strength of grout than SF. The water to binder ratio had the most significant effect on the compressive strength of PAC, followed by the coarse aggregate size and sand to binder ratio. An empirical relationship to predict the compressive strength of PAC was proposed through an experimentally derived factorial design along with a statistical analysis of collectively obtained data and a deep literature review. The results predicted by the empirical relationship were in good agreement with those of PAC produced for verification.

레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구 (The Application of High Strength Concrete in Batcher Plant and its Workability)

  • 김정식;김봉현;정진;이재삼;강훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

혼화제·재가 무시멘트 황토 모르타르의 유동성 및 압축강도 발현에 미치는 영향 (Effect of Superplasticizers and Admixtures on the Fluidity and Compressive Strength Development of Cementless Mortar Using Hwangtoh Binder)

  • 양근혁;황혜주;김선영;송진규
    • 콘크리트학회논문집
    • /
    • 제18권6호
    • /
    • pp.793-800
    • /
    • 2006
  • 본 연구의 목적은 개발된 황토결합재를 이용한 무시멘트 모르타르의 유동성과 압축강도에 대한 혼화제 재의 영향을 평가하는 것이다. 실험은 혼화제 재의 종류와 치환율에 따라 4그룹으로 분류되어 진행되었다. 시리즈 I은 고성능 감수제의 치환율에 따라, 시리즈 II는 물/황토결합재 비 50%, 60% 및 70%에서 고로슬래그와 팽창시멘트 치환율에 따라, 시리즈 III은 고로슬래그 비표면적과 치환율에 따라, 그리고 시리즈 IV에서는 콘크리트의 경시변화를 위해 개발된 분말형 혼화제인 PSP제의 치환율을 변화시켰다. 실험 결과에 근거하여 무시멘트 황토모르타르의 플로우와 압축 강도 향상을 위한 각 혼화재의 적정 치환율이 제시되었다.

메리골드 안료를 이용한 친환경 텍스타일 프린팅(1): 바인더의 종류와 혼합비율의 효과 (Eco-friendly Textile Printing using Marigold Pigment(1): Effect of Binder Type and Mixing Ratio)

  • 여영미;신윤숙
    • 한국염색가공학회지
    • /
    • 제31권4호
    • /
    • pp.233-240
    • /
    • 2019
  • Dyeing is an essential process for improving the value of textile products, but it is considered as one of industries causing pollution because of producing wastewater containing hazardous chemicals as well as using a large amount of water and energy. Global demand for greener technologies in textile field is getting much more attention and accordingly, the use of eco-friendly natural dyes is growing much larger. In textile printing, both dyes and pigments can be used. Pigment printing is more simple process and requires less water and less energy, compared to dye printing. In this study, the organic pigment was prepared from the marigold colorant. Samples were stencil printed, pressed(70℃, 3min) and then heat treated(150℃, 5min). The uptake of polyacrylic acid as a chemical binder was the lowest. In particular, marigold pigments were excellent in color and texture when Guar Gum and Sodium Alginate were used as binders. In addition, the light and washing fastness was rated very high as 4, 4/5 grades, and the rubbing fastness was also excellent as 3 and 4 grades.

이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성 (Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery)

  • 이호용;김태영;이종대
    • 한국응용과학기술학회지
    • /
    • 제32권3호
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT

  • Khater, H.M.;Gawwad, H.A. Abd El
    • Advances in nano research
    • /
    • 제3권4호
    • /
    • pp.225-242
    • /
    • 2015
  • The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.

콘크리트의 중성화로 인한 철근의 부식 정도 평가 (Evaluation of Rebar Corrosion Due to Carbonation of Concrete)

  • 이창수;설진성;윤인석
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.21-30
    • /
    • 2000
  • Recently, reinforced concrete structures exposed to severe enviroment are increased in metropolitan area. The acid rain and CO2 penetrated towad rebar, thus rebar corrosion occurred. The corrosion of rebar in concrete is, as in most corrosion processes, an electrochemical nature. The corrosion may severely affect on durability and service life of such a concrete structures. This study was performed for the purpose of acquiring data about corrosion condition and considering a countermeasure to prevent rebar from corroding due to carbonation of concrete. An accelerated car bonation testing procedure was applied to measure the evolution of carbonation and rebar corrosion with time for various water-binder ratios and cement types.