• Title/Summary/Keyword: waste-wood

Search Result 324, Processing Time 0.028 seconds

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

A Study on Estimation of Air Pollutants Emission from Traditional Fireplace in Korea (아궁이 사용에 의한 대기오염물질 배출량 산정에 관한 연구)

  • Kim, Dong Young;Choi, Min-Ae;Han, Yong-Hee;Park, Sung-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.538-544
    • /
    • 2014
  • A traditional fireplace has been used, but not much, for heating and cooking in rural area, Korea. Traditional fireplace as one type of biomass burnings is also emitting various air pollutants. Air pollutants emission from traditional fireplace was estimated in this study. There are two types of traditional fireplace, one for combined heating and cooking, the other one for cooking only. Types of fuels mostly used in traditional fireplace were wood, agricultural residue, solid waste. Activity levels such as fuel types, amount of fuel loading, and temporal variation were investigated by field survey over Korea. Estimated annual emissions from traditional fireplace were CO 6,335.0, NOx 555.0, SOx 9.6, VOC 1,771.7, TSP 181.4, $PM_{10}$ 119.9, $PM_{2.5}$ 96.2, $NH_3$ 1.4 ton/yr respectively. When emissions compared with the national emission inventory (CAPSS: Clean Air Policy Support System) of 2010 year, CO and $PM_{10}$ occupy 0.8% and 0.1% of total national emission, respectively.

Trends in Agricultural Waste Utilizatili-zation

  • Han, Youn-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.1-113
    • /
    • 1979
  • Each year, vast amount of agricultural crop residues are produced (about 60 percent of the total crop production), which have not been effectively utilized because they are bulky and lignocellulosic, thus having little fuel energy per unit volume. Using treated plant residues as animal feeds could result in an ultimate saving of fossil fuel energy and a more effective utilizat ion of products created by the photosynthetic process. Feeding the residues to animals would decrease the pollution potential, but these residues are difficult for even a ruminant animal to digest. If cellulosic wastes produced from cereal grain straw and wood could be digested, land now used for producing forage add grain cnuld be shifted to food crops for humans. During the past decade, considerable efforts were made to utilize crop residues. These utilization methods can be broadly grouped into for categories: (1) direct uses, (2) mechanical conversions, (3) chemical conversions and (4) biological conversions. Agricultural crop residues consist mainly of cellulose, hemicellulose, lignin, pectin, andother plant carbohydrates. The nature of the constituents of these residues can be best utilized as one of the five FS: Fuel, Fiber, Fertilizer, Feed and Food. Many processes have teen proposed and some are in industrial production stage. However, economics of the process depend on the location where availability of other competitive products are different.

  • PDF

Performance Analysis of a Vacuum Pyrolysis System

  • Ju, Young Min;Oh, Kwang Cheol;Lee, Kang Yol;Kim, Dae Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the performance of a vacuum pyrolysis system, to analyze bio-oil characteristics, and to examine the applicability for farm-scale capacity. Methods: The biomass was pyrolyzed at 450, 480, and $490^{\circ}C$ on an electric heat plate in a vacuum reactor. The waste heat from the heat exchanger of the reactor was recycled to evaporate water from the bio-oil. The chemical composition of the bio-oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results: According to the analysis, the moisture content (MC) in the bio-oil was approximately 9%, the high heating value (HHV) was approximately 26 MJ/kg, and 29 compounds were identified. These 29 compounds consisted of six series of carbohydrates, 17 series of lignins, and six series of resins. Conclusions: Owing to low water content and the oxygen content, the HHV of the bio-oil produced from the vacuum reactor was higher by about 6 MJ/kg than that of the bio-oil produced from a fluidized bed reactor.

Study for the Design of Zero-carbon City through the Application of Renewable Energies (신재생에너지 적용기술이 저탄소녹색도시건설에 미치는 영향연구)

  • Park, Young-Gyu;Kim, Jeong-In;Kim, Kap-Chul
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.15-29
    • /
    • 2010
  • In order to make the best choice for $CO_2$ abatement using renewable energy technologies, it is important to be able to adapt these technologies on the basis of their sustainability, which may include a variety of environmental indicators. This study examined the comparative sustainability of renewable technologies in terms of their life cycle $CO_2$ emissions and embodied energy, using life cycle analysis. The models developed were based on case studies of bioenergy pilot plant in P city of Kyungki province. Final results were total emission of $CO_2$ in Pocheonsi is 670,041 $tCO_2$, around 500,877 $tCO_2$ for electricity and for heat generation, and 169,164 $tCO_2$ for transportation. When used $1,984\;m^3$/day of waste (pig manure etc.) and operated CHP with wood chips of 144,664 ton/year, the $CO_2$ emission in P city was left as is an emission of 449,274 $tCO_2$ and an abatement of $CO_2$ in this region was increased by 32.9%.

Examination of the Fragmentation Behavior of Hemin and Bilin Tetrapyrroles by Electrospray Ionization and Collision-induced Dissociation

  • Sekera, Emily R.;Wood, Troy D.
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.91-94
    • /
    • 2018
  • Bilin tetrapyrroles are metabolic products of the breakdown of porphyrins within a species. In the case of mammals, these bilins are formed by the catabolism of heme and can be utilized as either biomarkers in disease or as an indicator of human waste contamination. Although a small subset of bilin tandem mass spectrometry reports exist, limited data is available in online databases for their fragmentation. The use of fragmentation data is important for metabolomics analyses to determine the identity of compounds detected within a sample. Therefore, in this study, the fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID) as a function of collision energy on an FT-ICR MS. The use of the FT-ICR MS allows for high mass accuracy measurements, and thus the formulas of resultant product ions can be ascertained. Based on our observations, fragmentation behavior for hemin, biliverdin and its dimethyl ester, phycocyanobilin, bilirubin, bilirubin conjugate, mesobilirubin, urobilin, and stercobilin are discussed in the context of the molecular structure and collision energy. This report provides insight into the identification of structures within this class of molecules for untargeted analyses.

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

Evaluation and Improvement for Enforcement of the Waste Recycling System in Pohang City (쓰레기 종량제 실시 후 평가 및 개선방향 - 포항시 중심으로 -)

  • Ha, Yeong-Gil;Park, Kyung-Min;Lee, Sung-Kook
    • Journal of agricultural medicine and community health
    • /
    • v.21 no.1
    • /
    • pp.97-105
    • /
    • 1996
  • This study conducted to determine the evaluation and improvement for enforcement of the waste recycling system in Pohang city and surveyed 4 areas at the southern and northern districts respectively by a team of two officials during the period 6 February 7 February 1995. The rates of the use for waste recycling system's envelope from home trash were 94.2% at the northern district and 92.8% at the southern district by areas, 95.6% at the group houses (apartments and tenement houses) and 91.3% at the separate houses by patterns of house, the low economic class 96.4%, the middle economic class 96.3% and the upper economic class 87.5% by the economic levels, and the bell method 96.5%, the container method 95.6%, door take method 86.1% in order, respectively. The trash from houses were garbage 57.4%, paper 18.7%, plastic 10.3%, fiber 7.9%, bottle 2.7%, metal and can 1.4%, and wood and rubber 0.7% in order. The rates of the reuse trash(reuse possible paper, plastic, bottle, can and metal) were 20.2% of the total, 21.8% at the southern district and 18.5% at the northern district by areas, 25.7% at the separate houses and 14.7% at the group houses(apartments and tenement houses) by patterns of house, and the door take method 34.3%, the bell take method 17.1% and the container take method 14.7% in order, respectively. There were the double envelopes of the plastic bag from stories 46.3% and the clear plastic bag 29.5% in the waste cycling system's envelopes. There were 1.9 double envelopes in the waste cycling system's envelopes. Garbage occupied more than half of the total trash, so it is need to be compost and provender.

  • PDF

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Studies on Microbial Utilization of Agricultural Wastes (Part IV) Cellulosic Waste Materials as Substrate on the Production of Cellulosic Single Cell Protein. (농산폐자원의 미생물학적 이용에 관한 연구 (제육보) 섬유소단세포단백 생산에서의 천연기질의 이용성)

  • Bae, Moo;Ko, Young-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.18-23
    • /
    • 1977
  • Experiments were carried out to pursue the availability and the feasibility of utilizable cellulosic materials as substrate for the production of cellulosic single cell protein. The resuluts were obtained as fellows. 1. Effects of carbolydrates as a sole carton source on the growth of Cellulomonas flavigena KIST 321 were examined. The result showed that cellulose and xylose would be most utlizable for cell mass production. 2. Alkaline treated waste papers and clothes resulted in good growth of the organism than intact ones did. However the waste papers as substrate of cellulosic fermentation were not digestible, even if the meterial was treated with alkalies. 3. Rice straw, rape straw and panic grass appeared to be good substrates for the cell mass production. 4. Leaves were proved to be a good substrate for the cell mass production, but wood sawdust was hardly digested by merely alkaline treatment. 5. When cellulosic wastes as the substrate were examined into the concentration of alkaline solution, the result suggested that the best productivity of cell mass from cellulosic materials was obtained on treatment with 0.8∼1.0% NaOH solution. 6. The productivity of cell mass was increased by washing out with water after alkaline treatment of newspaper, pine sawdust, lime sawdust and pine leaf.

  • PDF