• Title/Summary/Keyword: waste-ethylene vinyl acetate copolymer(W-EVA)

Search Result 2, Processing Time 0.018 seconds

Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder

  • Lee, Rami;Park, Se-Ho;Baek, Jong-sung;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recycling of waste polyvinyl chloride plastics has attracted much attention due to environmental problems, but the poor mechanical properties, low thermal stability, frequent breakage of strands, and melt cracking of the waste plastics have limited their widespread use. To overcome these disadvantages of waste PVC (W-PVC), recycled PVC powder blend was prepared by adding high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) as a heat stabilizer and compatibilizer, respectively. An intermeshing co-rotating twin screw extruder was used to prepare the blend, and the characteristics of the blend were analyzed by SEM and TGA, and by using a UTM and Izod impact tester. The impact strength was improved as the EVA content increased for the W-PVC/HDPE (80/20 wt%) blend. As the HDPE and EVA contents increased in the W-PVC/HDPE/EVA blend, the impact strength increased. SEM observations also revealed the improved interfacial adhesion for the EVA-containing blend.

Flame Retardancy and Foaming Properties of the Waste-Polyethylene(W-PE)/Waste-Ethylene vinyl acetate copolymer(W-EVA) Blend Foams (폐폴리에틸린/폐에틸렌 비닐아세테이트공중합체 블렌드 발포체의 난연 및 발포 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 2003
  • The blends of waste-polyethylene (W-PE)/waste-ethylene vinyl acetate copolymer (W-EVA) with inorganic and phosphorous flame retardants (i.e., aluminium hydroxide, magnesium hydroxide, and so on) were prepared by melt mixing techniques at different compositions and foamed. The flame retardancy and foaming properties of the blends, limiting oxygen index (LOI), heat release rate (HRR), carbon monoxide yield (COY), total heat release (THR), effective heat of combustion (EHC), expandability and cell structure were investigated using cone calorimeter, SEM, LOI tester and polarizing microscope. When the composition ratios of the W-PE/W-EVA blends were 50/50 (w/w), and the ranges of the flame retardants contents were $175{\sim}220 phr$, we could obtain foams with the uniform and closed cell, high expandability (1900 % or more), high LOI, and low HRR values. These results depend on crosslinking and loaming conditions, a char formation and smoke suppressing effect. Aluminium hydroxide had more effect in the increase of LOI than magnesium hydroxide, while magnesium hydroxide considerably affected the decrease of HRR and COY.