• Title/Summary/Keyword: waste water sludge

Search Result 263, Processing Time 0.298 seconds

TECHNICAL APPLICATION OF READY MIXED CONCRETE SLUDGE WATER TO CEMENT MATRIX

  • Moon, Han-Young;Shin, Hwa-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.555-559
    • /
    • 2001
  • A by-product, waste sludge water produced from ready mixed concrete(remicon) factories may affect our environmental contamination if it is discharged without proper waste disposal. In Korea, all waste sludge water has been recycled in the way of mixing water of remicon, but the quality of the concrete then produced can be deteriorated, so it might cause slump loss or irregular compressive strength. In this study, waste sludge water is divided into two parts, remicon sludge and residual water in order to make it's property more stable. Then, the remicon sludge and high-alkaline residual water were used as admixture and alkali activator respectively. In this paper we research about quality of with remicon sludge and residual water and performed the fundamental properties of cement matrix mixed with remicon sludge and residual water.

  • PDF

Manufacturing Water Permeable Block Using Loess, Clay and Waste Sewage Sludge (황토, 점토 및 하수처리오니를 이용한 투수블록 제조)

  • Kim, Jong Dae;Han, Sang Moo;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.476-481
    • /
    • 2015
  • Water permeable block was manufactured using waste sewage sludge, loess and clay for the purpose of recycling waste sludge due to the prohibition of waste sludge ocean dumping. Experiments for determining optimum mixing ratio was conducted by changing sludge content in water permeable block as 5~20%. In respect of compressive strength, $1,600N/cm^2$ ($163.3kg/cm^2$) was obtained when the mixing ratio of sludge : loess : clay were maintained by 5% : 65% : 30%, 10% : 65% : 25% and 15% : 65% : 20%, respectively. These mean that relatively high compressive strength can be obtained when the sludge content is maintained 5, 10, 15% at the 65% of loess content. In terms of water permeability and absorption rate, the higher values can be obtained as the sludge content increases. The optimum mixing ratio of sludge : loess : clay came out to be 15% : 65% : 20% when water permeability, absorption and strength were considered altogether, which matches the result observed by an electron microscope. The heavy metal leaching test result of the prepared permeable block appeared to satisfy the environmental standard in the content of Cd, Cu, Pb and As.

Strategy for efficient operation on the backwash waste treatment in membrane filtration water treatment plant (막여과 정수장 배출수처리시설의 효율적인 운영방안)

  • Jung, Wonchae;Yu, Youngbeom;Lee, Sunju;Moon, Yongtaik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2014
  • Membrane backwashing waste shows seasonally different characteristics and it has bad settleability differently from general backwashing waste in water treatment plant. When chemicals was injected to membrane backwashing waste, the settleability was better than chemicals was not injected. However, when settled lower sludge was not discharged, flowing sludge continuously was concentrated over a certain surface and floatation penomena occurred according to flowing velocity. When the lower sludge was discharged continuously in the thickener to prevent floatation penomena of turbidity materials, the depth of sludge surface was the least and the settleability increased.

Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge

  • Lee, Juhyeok;Kim, Byoungkwan;Kang, Jaehyuk;Kang, Jaeeun;Kim, Won-Seok;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.465-479
    • /
    • 2020
  • Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.

The Early-Age Strength Properties of Cement Mortar using Modified Remicon Sludge and Water (레미콘 슬러지 및 상등수를 활용한 시멘트 모르타르의 초기강도)

  • 문한영;신화철;김태욱;여병철;박창수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1248-1251
    • /
    • 2000
  • Recently, the yearly amount of remicon used in Korea is approximately one hundred million cubic meter, and it caused a by-product, remicon waste sludge. The sludge produced by washing mixers or drums of remicon trucks is restrained by the law for waste disposal because its pH is over 12, so the expense for waste disposal is needed. Until now, the waste sludge water has been recycled and used for concrete materials as sludge water which is limited to 3% of cement unit weight. However, the study on the properties of the concrete mixed with this waste sludge is so insufficient that the quality of them can be hardly trusted. Therefore, the study on that will be discussed.

  • PDF

Study on Bio-H2 Production from Synthetic Food Waste and Activated Sludge from Industrial Waste Water Processes using Dark-fermentation (산업공정의 폐수처리에서 발생된 폐활성슬러지 및 인공음식폐기물을 이용한 생물학적 수소생성에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Mi-Hyung;Lee, Myoung-Joo;Hwang, Sun-Jin;Eom, Hyoung-Choon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.703-712
    • /
    • 2010
  • This study performed to extract operation factors of major organic wastes, which were food wastes and waste activated sludge generated in industries in order to use them as a substrate for bio-H2 production. According to the results of experimental analysis for hydrogen production capacity by various organic concentrations, the hydrogen production yield was the highest at 80 g/L, and the efficiency was improved by the pretreatment of waste activated sludge (acid treatment, alkali treatment). Hydrogen production efficiency was improved by mixing food wastes and waste activated sludge if waste activated sludge was below than 30%, however, it was decreased when it was more than 50%. The impacts of heavy metals on the hydrogen production shows that the inhibition level depends on the concentration of Cr, Zn, and Cu, Fe was able to enhance the hydrogen production.

Development of Grogged Clay Used Water-purified-sludge (정수슬러지를 사용한 조합토의 개발)

  • Jeong, Jae-Jin;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • People could not imagine living without tab water. However, the water filtering process at a purification plant used to produce tab water creates tons of sludge, which is generally wasted. This sludge waste consists of (1) mineral elements, such as sand, (2) organic materials, and (3) a coagulant, which agglomerates the two. As an enormous amount of sludge waste is generated every year, numerous studies have been carried out to identify how to deal with this problem. Currently, however, most of the sludge waste is directly discarded in landfills. In the present study, water-purified sludge waste received a heat treatment at $1300^{\circ}C$ and was then ground into particles to be used as a ceramic material. Next, the resultant particles were compounded with chamotte substitutes to produce grogged clay that is suitable for wheel-throwing ceramics. Consequently, the plasticity of the sludge waste decreased as the content of calcination increased. Thus, it is considered that wheel throwing is available only up to PBF-3. Thus, it is available for wheel throwing and has a high strength of 864 $kgf/cm^2$ with less than 0.2 percent of porosity and absorption ratio were displayed in PBF-2 at $1280^{\circ}C$ with 20 percent of calcination from the purified sludge. Therefore, the PBF-2 body produced in this study was considered to be capable of replacing grogged clay in the market.

Study on Characteristics of Piggery Waste and Processing Sludge for Reuse (재활용을 위한 양돈폐수와 공정슬러지의 특성연구)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.308-313
    • /
    • 2006
  • Charicteristics of piggery waste and treatment processing sludges for reuse were investigated. If it was thoroughly regulated in disinfectants, antibiotic substances and heavy metals, raw piggery waste can be gratified in criteria for fermentative compost (liquid) for flowers cultivation. Also, Because it is satisfied with various criteria of heavy metals and fertilizer contents for reuse except water content, primary pre-treatment sludge is very good material for composting. If provated goods on heavy metals are used in coagulation & dewatering process, coagulation & dewatering sludges are suitable for criteria of special waste regulation and by-product compost. This study proves that, if they are accomplished with suitable composting and mature process, piggery waste and processing sludges are free from microbiological problems as well as criteria of composting.

Pozzolanic reaction of the waste glass sludge incorporating precipitation additives

  • You, Ilhwan;Choi, Jisun;Lange, David A.;Zi, Goangseup
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.255-269
    • /
    • 2016
  • The waste glass sludge is a waste produced in the glass industry. It is in a dust form and disposed with water. In the disposal process, various cohesive agents are incorporated in order to precipitate the glass particles efficiently. In this paper, we investigate the pozzolanic reaction of the waste glass sludge incorporating precipitation additives experimentally. The consumption of calcium hydroxide, the setting time and the compressive strength and the pore structure were tested for two different types of the waste glass sludge depending on whether precipitation additives were used. It was found that the waste glass sludge incorporating the precipitation additives had a higher pozzolanic potential than the reference waste glass sludge without precipitation additives.

The Study on the Dewaterability Improvement of Water Treatment Sludge Using Powdered Waste Oyster Shells (분말 폐굴껍질을 이용한 정수슬러지의 탈수 개선방안)

  • Moon, Jong-Ik;Choi, Sung-Moon;Lim, Young-Seok;Sung, Nak-Chang;Kim, Chul;Kwak, Young-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.17-21
    • /
    • 2001
  • The object of this study is to find out the characteristics of waste oyster shells and determine the proper dosage of powdered waster oyster shells as the conditioning agent for water treatment sludge dewatering process. The large amount of waste oyster shells which discharges from the oyster farming, occurs serious environmental hazards. However, oysters shell contain large amount(about 38% by weight) of alkaline minerals, such as calcium and magnesium and so on, this natural material is thought to have the petential ability as a good conditioning agent. The results of this study are as follows. The optimum condition for improvement of the water treatment sludge dewaterability is when 6 g of waste oyster shell powder added to 200$m\ell$ of water treatment sludge. At optimum condition, the solid contents can reach to 31.78% and the specific resistance of conditioned sludge is 0.16$\times$10$^{8}$ sec$^2$/g. However, exceeding the of powdered waste oyster shell is needed to get the effective result. Consequently, the waste oyster shell can be a recyclable material to improve the dewaterability of water treatment sludges.

  • PDF