• Title/Summary/Keyword: waste vinyl

Search Result 91, Processing Time 0.021 seconds

Storage of Waste-Brown Seaweed and Degradation of Alginate Using Microorganism (미생물을 이용한 미역폐기물의 저장 및 알긴산염 저분자화)

  • An, Sang Jun;Kim, Yeong Suk;Park, Gwon Pil
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.313-318
    • /
    • 2004
  • We studied a storage of waste-brown seaweed at room temperature and degradation of alginate in seaweed by microorganism DS-02. The seaweeds, mixed with 5.0 wt% DS-02 and sealed in vinyl package without any other treatment, could be stored longer than 1 year without spoilage at room temperature. During the storage process, the alginate of seaweed was decomposed by enzyme of DS-02 and the molecular weight of alginate decreased to about 1/10 of initial quantity. DS-02 growed as fast as it had maximum weight after 24 hour culture and it's enzyme had a maximum activity of alginate degradation at $40^{\circ}C.$ The seaweed sample became particles in DS-02 culture solution and the M. W of alginate decreased to about 1/10 of initial value after 24 hour decomposition. The effect of alginate degradation with DS-02 was similar to that of degradation with 3.0 M HCI solution for 24 hour.

Dry Separation of PVC Film from Plastic Film Mixture by Using Air Table

  • Song, Young-Jun;Hiroki Yotsumoto;Lee, Gye-Seung
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • This study was conducted in order to remove Poly vinyl chloride(PVC) from the waste plastic film mixture. The fittings of Air Table was modified to increase the separation efficiency of PVC and PE(poly ethylene). PE and PVC was successfully separated from PVC-PE film mixture with the yield of PE 90% or more and with his grade of 99% or more, using the improved Air Table. The details of the separation condition and results will be discussed in this paper. Dry separation, Waste plastic film, PVC, Air Table. The details of the separation condition and results will be discussed in this paper.

Current Status and Improvements on Management of Plastic Waste in Korea (국내 폐플라스틱의 관리 현황 및 개선사항)

  • Choi, Yong;Choi, Hyeong-Jin;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.3-15
    • /
    • 2018
  • Since the use of plastics in various goods such as film, containers, and packaging has been increasing in Korea, the generation of plastic waste is increasing. Plastic wastes are managed by waste charge system, Extended Producer Responsibility (EPR) system and voluntary agreement of plastic waste collection-recycling system. Recently, the management of plastic waste is becoming a social issues due to the refusal of the collection of plastic waste including waste plastic bag and waste vinyl. The ministry of environment in korea was set up the comprehensive plan for recycling waste management in accordance with the circulation cycle of manufacturing and production - distribution and consumption - separate and discharge - collection and sorting - recycling. In this study, the improvements for management of plastic waste were suggested with the review of domestic waste plastics management and the comprehensive plan by the ministry of environment.

Feedstock Recycling Technologies using Waste Vinyls (폐비닐을 이용(利用)한 재생원료화(再生原料化) 기술(技術))

  • Chung, Soo-Hyun;Na, Jeong-Gul;Kim, Sang-Guk;Woo, Hee-Myung;Kim, Young-Tae
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.46-54
    • /
    • 2013
  • The produced quantity of waste plastics including waste vinyls was assumed as about 5 million tons per year. The quantity of waste vinyls produced from the waste recycling center among total quantity of waste plastics was estimated as about 1 million tons per year. Most of waste vinyls produced from the waste recycling center were recycled as refuse plastic fuel(RPF) or recycled feedstock material. In this study, the medium material using waste vinyls was made by the melting process of heat medium heating and the tensile strength was analyzed for checking the usable possibility of recycled waste vinyl material by comparing with the existent product. In order to use the medium material for producing the recycled product, it can be considered that the tensile strength of medium material is more than 100 $kgf/cm^2$.

Application of High-temperature 3-phase Equilibrium Distribution to Dry Scrubber for the Simultaneous Removal of $SO_2$ and Vinyl Chloride (건식세정기에서의 오염물 동시제거를 위한 고온3계평형 모델의 적용과 예비설계에의 응용)

  • 구자공;백경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1990
  • Simultaneous removal efficiencies of hydrophilic and hydrophobic gaseous pollutants are experimentally determined, and the macroscopic removal mechanism of pollutants in a dry scrubber is analyzed using the extended model of three phase equilibrium distribution of pollutant at high temperatures that can describe the different morphological conditions of adsorbent and water at varying relative humidities. For the simplicity, the inside of spray dryer is divided into three regions of ; (1) absorption, (2) three-phase equilibrium, and (3) adsorption, and the removal efficiencies of each pollutants at three regions are observed at different experimental conditions to estimate the effects of important parameters of dry scrubber. The laboratory experiments simulate the three regions of spray dryer with the temperature control and thus evaporation rate of water from the slurry particle. $SO_2$ as a hydrophilic gaseous pollutant and vinyl chloride as a hydrophobic toxic gas are selected for the future field application to soid waste incineration, and the two types of slurry are made of the two sorbents ; 10 wt.% $Ca(OH)_2$, and 10 wt.% NaOH. Result of temperature effect shows the height of absorption plus three-phase region is decreased as the operation temperature is increased, which results in the lower removal efficiency of $SO_2$ but higher removal for vinyl chloride in the adsorption region of dry scrubber. The removal efficiency of $SO_2$ is higher by NaOH slurry than by $Ca(OH)_2$ slurry due to the hygroscopic nature of NaOH, while the removal of vinyl chloride is higher in $Ca(OH)_2$ case. From the analysis of redults using three-phase equilibrium distribution model, the effective two-phase partition coefficients can be obtained, and the possible extention in the application of the three-phase equilibrium model in a dry scrubber design has been demonstrated.

  • PDF

Evaluation of Resource Recovery from Sorted Waste by MBT System (MBT시스템에 의해 선별(選別)된 생활폐기물(生活廢棄物)의 자원화(資源化) 평가(評價)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Han, Sang-Kuk;Lee, Nam-Hoon;Kang, Jeong-Hee;Wie, June
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2013
  • This study was carried out to evaluate the possibility of resource recovery for municipal solid waste(MSW) that sorted by a MBT system. First, physical property of MSW was similar to wastes carried into Sudokown landfill site. However, moisture of MSW was little higher than that. As a result of BMP test using organic fraction of MSW(OFMSWs), approximately 60 ~ 80 mL $CH_4/g$-VS of methane was occurred. Compared to the other studies, the value of methane is lower. It seems to be caused that high ratio of vinyl/plastic in OFMSWs. The other BMP test using sample of MBT system located in Sudokwon landfill was conducted each physical properties. According to the result of experiment, food waste makes 193 mL $CH_4/g$-VS, and paper is 102 mL $CH_4/g$-VS. However, there was not methane production in vinyl and rubber. Additionally, others that can't sort no more show 30 m $CH_4L/g$-VS of methane production. From the result of experimental data OFMSWs has high fraction of vinyl, rubber and other substance that difficult for biodegradation. Therefore it is need to sort of them.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor (실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구)

  • Park, Ju-Won;Park, Sang-Shin;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF

Review on PVA as a Water Soluble Packaging Material (수용성 폴리비닐알콜(PVA) 포장소재의 이용)

  • Lee, Ji-Youn;Jang, Si-Hun;Park, Su-Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • It is now widely recognized that the disposal of packaging waste is an increasing environmental concern. Recent interest in polymer waste management of packaging materials has added incentive to the research. Poly(vinyl alcohol) is a readily biodegradable water-soluble polymer. However, this polymer cannot be processed by conventional extrusion technologies because the melting point of PVA is close to its decomposition temperature. Therefore, PVA films have been mostly prepared by solvent casting from water. Applications of PVA include sizing, binders, fibers, and films for agricultural chemicals and hospital laundry bags. A better understanding of PVA films, which also play important roles in the degradation of plastics, will expand the usage of PVA. Composite films based on PVA generally exhibit better mechanical and thermal properties than pure PVA. The aim of this review article is to review types, formation, and properties of PVA films and PVA based composite films used in packaging related researches.

  • PDF

Study on Characteristics of Liner and Cover Material in Waste Landfill using VAE Resin (VAE 수지를 활용한 폐기물 매립지의 차수재 특성 연구)

  • Lee, Seung-Jae;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.503-509
    • /
    • 2019
  • To prevent environmental pollution caused by leakage of leachate from waste landfill, vinyl acetate-ethylene (VAE) resin is applied to liner and cover materials to improve their performance. Styrene, styrene butadiene rubber, and VAE are widely used as polymer resins that have excellent water resistance and durability. Further, VAE resin is known to have additional advantages such as adhesion to nonpolar materials and resistance to saponification as a copolymer. In this study, the effect of VAE content on the properties of liner and cover materials was studied. The water and air content ratios, bending and compressive strengths, water absorption ratio, and coefficient of permeability of these materials were measured. The liner and cover materials with 4 wt% VAE showed good properties.