• Title/Summary/Keyword: waste slag

Search Result 245, Processing Time 0.033 seconds

Survey on the Recycling of Waste Slag Generated by Smelting Reduction of Deep-Sea Manganese Nodules (망간단괴 용융환원 폐슬래그의 재활용 방안)

  • Park, Hyungkyu;Nam, Chulwoo;Kim, Sungdon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Slags generated in the smelting reduction of deep sea manganese nodule could be utilized as an additional materials for making Fe-Si-Mn alloys by mixing with cokes and re-smelting at an arc furnace. In this re-melting process slag is also generated, and the secondary slag is treated as waste. In this survey, recycling of the waste slag of Mn nodule was studied. It is tried to utilize the waste slag as ceramic materials or construction materials. However, it is difficult to use the waste slag directly as an additional material to ceramics such as portland cement or castable refractory material due to the much difference of chemical compositions. As an altercation road constructing material is considered, and toxicity on the soil of the waste slag was tested according to Korean Standard for testing permissible amount of toxic substances. The test result was satisfied with the requirements on the standard. So, it should be suggested that the waste slag of the Mn nodule could be utilized as constructing materials such as road filler or base materials.

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

A Novel Process for Extracting Valuable Metals from Waste Electric and Electronic Scrap Using Waste Copper Slag by a High temperature Melting Method (폐동(廢銅)슬래그를 활용(活用)한 폐전기전자(廢電氣電子) 스크랩으로부터 유가금속(有價金屬) 고온용융추출(高溫鎔融抽出) 공정(工程) 개발(開發))

  • Kim, Byung-Su;Lee, Jae-Chun;Lee, Kwang-Ho
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.27-33
    • /
    • 2007
  • It is very important in the view point of resource recycling to recover valuable metals such as copper and tin from waste electric and electronic scrap. The waste electric and electronic scrap contains significant amounts of copper, tin, and so on. In this study, a new process for extracting copper and tin contained in the waste electric and electronic scrap using waste copper slag which is generated from the melting furnace of copper smelter was presented. Advantage of the proposed process is to reuse waste copper slag instead of new fluxes as slag formatives. In each experiment, the waste electric and electronic scrap and waste copper slag were melted inputting suitable amount of CaO as an additional flux. Up to 95% of copper and 85% of tin in the raw material were extracted in a Cu-Fe-Sn alloy phase.

Superconducting magnetic separation of ground steel slag powder for recovery of resources

  • Kwon, H.W.;Kim, J.J.;Ha, D.W.;Choi, J.H.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.22-25
    • /
    • 2017
  • Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

Remarks on the use of Electric Arc Furnace (EAF) Steel Slag in Asphalt Mixtures for Flexible Pavements (Electric Arc Furnace (EAF) Steel Slag의 아스팔트 포장 혼합물 내 대체 골재로서 적용 가능성에 대한 고찰)

  • Falchetto, Augusto Cannone;Moon, Ki Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • PURPOSES : This paper, presents the results of a laboratory study aimed to verify the suitability of a particular type of Electric Arc Furnace (EAF) steel slag to be recycled in the lithic skeleton of both dense graded and porous asphalt mixtures for flexible pavements. METHODS : Cyclic creep and stiffness modulus tests were performed to evaluate the mechanical performance of three different asphalt mixtures (dense graded, porous asphalt, and stone mastic) prepared with two types of EAF steel slag. For comparison purposes, the same three mixtures were also designed with conventional aggregates (basalt and limestone). RESULTS : All the asphalt mixtures prepared with EAF steel slag satisfied the current requirements of the European standards, which support EAF steel slag as a suitable material for flexible pavement construction. CONCLUSIONS : Based on the experimental work, the use of waste material obtained from steel production (e.g. EAF steel slag) as an alternative in the lithic skeleton of asphalt mixtures can be a satisfactory and reasonable choice that fulfills the "Zero Waste" objective that many iron and steel industries have pursued in the past decades.

Dynamic Properties of Artificial Stone with Waste Porcelain according to the ratio of Blast Furnace Slag (고로슬래그 치환율에 따른 폐자기 인조석재의 역학적 특성)

  • Seol, Dong Keun;Lee, Sang Soo;Song, Ha Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.15-16
    • /
    • 2015
  • Natural stone causes environmental pollution when it is collected and processed. Also, it is hard to make consistent products. Therefore, this study focuses on the artificial stone with waste porcelain to replace natural stone. The flexural strength and compressive strength are lower according to the replacement ratio of blast furnace slag in the result of experiment.

  • PDF

Permeable Reactive Barrier Using Atomizing Slag Material for Waste Contaminant Management

  • Chung Ha-Ik;Kim Sang-Keun;Chang Won-Seok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.122-122
    • /
    • 2005
  • The remediation for contaminated soil and groundwater in contaminated site and waste site has to be compact and economic in maintaining and operating the system. In this study, the atomized slag was tested if they are an effective reactive material in permeable reactive barrier This novel reactive system technology was applied to the treatment of leachate from unplanned waste landfill. The system was optimized and developed to be commercialized.

  • PDF

Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement (폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성)

  • Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

Present State and Prospect on Reutilization of Metal - Bearing Solid Wastes in China

  • Chai, Liyuan;Chen, Weiliang;Min, Xiaobo;He, Dewen;Zhang, Chuanfu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.183-187
    • /
    • 2001
  • Present states on reutilization of metal-bearing solid wastes in China including metal-containing gangue, red mud, nonferrous metallurgical slag or residue, arsenical slag, steel - iron slag, waste batteries, were described in detail. The wastes pile up at a large quantity, resulting in seriously potential harm to environment. Most of these wastes, however, contain valuable metals, which are regarded as important secondary resources for extracting metals. Waste slag and batteries with a high grade of metals are treated by a hydro-based and / or pyre-based method for extracting valuable metals. While gangue and waste slag with a low grade are as a raw material in architecture field. In the future, a novel technology, such as high-grads magnetization separation technique and biological technique, will be designed to treat these wastes for protecting environment and recycling valuable components. These wastes, furthermore, are synthetically reutilized to produce various architectural materials, including glass and ceramics.

  • PDF

An Study on Compressive Strength Properties of Mortar with Municipal Solid Waste Incineration Ash Melted Slag Powder (쓰레기 소각재 용융슬래그 미분말을 혼입한 모르타르의 압축강도 특성에 대한 연구)

  • Lee, Yong-Moo;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In order to investigate the feasibility of municipal solid waste incineration ash melted slag powder as admixture, an experimental study was performed on cement mortar with municipal solid waste incineration ash melted slag powder. Fresh mortar properties and strength properties with various municipal solid waste incineration ash melted slag powder replacement ratios were estimated. There replacement ratio adopted in this study was 0, 10, 20, 30, 40, 50%. After then flow properties was considered as properties of fresh mortar. And compressive strength was determined 3, 7, 14, 28, 56 days for the hardened mortar specimens. According to the test results, the flow of mortar was increased with in replacement amount of municipal solid waste incineration ash melted slag powder. Furthermore, compressive strength at early age was decreased, whereas the compressive strength at the age of 28, 56day was increased.