• 제목/요약/키워드: waste reduction

검색결과 1,079건 처리시간 0.028초

Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic

  • Moujanni, Abd-essamad;Qarraey, Imane;Ouatmane, Aaziz
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.38-44
    • /
    • 2019
  • The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at $35^{\circ}C$ over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to $32.3gO_2/L$ and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.

온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향 (Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction)

  • 정민정;박진규;안덕용;이남훈
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.

Application of crude enzymes obtained from Pyrus pyrifolia cv. Shingo on milk proteins

  • Park, Min-Gil;Kim, Hyoung-Sub;Nam, In-Sik;Kim, Woan-Sub
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.789-797
    • /
    • 2018
  • This study investigated the activity of crude enzymes obtained from Pyrus pyrifolia cv. Shingo on milk proteins. In the milk processing industry, there is an increasing interest in the addition of functional materials to dairy products or functional peptides isolated from milk proteins. First, Pyrus pyrifolia cv. Shingo was separated into core, flesh, and peel regions, and crude enzymes were obtained from the individual regions. The activity of the obtained crude enzymes was measured using casein and gelatin agar. The crude enzyme obtained from the flesh of Pyrus pyrifolia cv. Shingo decomposed gelatin, but the activity of the crude enzymes obtained from the peel and core regions was insignificant. On the other hand, the crude enzymes obtained from the flesh and core regions of Pyrus pyrifolia cv. Shingo had a remarkable enzymatic activity in casein agar. However, the activity of the crude enzyme obtained from the peel region was insignificant. In addition, the crude enzymes obtained from the individual regions were mixed with casein to induce reactions, and the degradation patterns were investigated through electrophoresis and high performance liquid chromatography (HPLC). According to the results, the crude enzymes from Pyrus pyrifolia cv. Shingo degraded milk proteins. Thus, the results of this study can be used in studies on functionality. Additionally, it is expected that the use of pear peels and cores in the milk processing industry would greatly contribute to the reduction of food waste.

건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석 (Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System)

  • 인정현;이율호;강상규;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

철 함침 낙엽 Biochar에 의한 음이온성 염료의 흡착특성 (Adsorption Characteristics of Anionic Dye by Fe-Decorated Biochar Derived from Fallen Leaves)

  • 박종환;김홍출;김영진;서동철
    • 한국환경농학회지
    • /
    • 제39권4호
    • /
    • pp.289-296
    • /
    • 2020
  • BACKGROUND: There is a need for a revolutionary method to overcome the problem of biochar, which has relatively low adsorption capacity for existing anion pollutants, along with collectively recycling fallen leaves, a kind of forest by-product. Therefore, the objective of this study was to prepare iron-decorated biochar derived from fallen leaves (Fe-FLB), and to evaluate their adsorption properties to Congo red (CR) as anionic dye. METHODS AND RESULTS: The adsorption properties of CR by fallen leaves biochar (FLB) and Fe-FLB were performed under various conditions such as initial CR concentration, reaction time, pH and dosage with isotherm and kinetic models. In this study, Fe-FLB prepared through iron impregnation and pyrolysis of fallen leaves contained 56.9% carbon and 6.3% iron. Congo red adsorption by FLB and Fe-FLB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of FLB and Fe-FLB were 1.1 mg/g and 25.6 mg/g, respectively. In particular, it was found that the adsorption of CR was occurred by chemical adsorption process by the outer boundary layer of Fe-FLB. CONCLUSION: Overall, the production of Fe-FLB using fallen leaves and using it as an anion adsorbent is considered to be a way to overcome the problem of biochar with relatively low anion adsorption in addition to the reduction effect of waste.

식량안보를 위한 식품과학기술의 역할과 정책방향 (The role and policy direction of food science and technology for food security of korea)

  • 이철호
    • 식품과학과 산업
    • /
    • 제49권4호
    • /
    • pp.3-18
    • /
    • 2016
  • 반세기 전만해도 식량의 생산과 공급은 농수산업에 의해 이루어 졌다. 그러나 지금은 전체 식량의 자급도가 50% 미만으로 떨어졌고, 상대적으로 식품산업이 모자라는 식량을 전 세계에서 구입하여 가공해서 식품을 공급하고 있다. 따라서 식품산업은 농수산업과 함께 5천만 국민의 식량을 공급하는 식량산업으로 역할과 책임을 감당하고 있다. 식품산업의 발전을 이끌어가는 식품과학기술은 이 나라의 식량안보를 책임지는 과학기술로서의 사명을 감당해야 한다. 앞으로 예견되는 세계 식량위기에 대해 식품과학기술이 각별한 관심과 준비를 해야 하는 이유이다. 생명공학 신품종(GMO)에 대한 소비자들의 부정적인 인식을 불식시키고 안전한 식품으로 사용되도록 식품학계가 노력해야 한다. 핵물질과 방사선조사를 구분하지 못하는 소비자 교육 홍보도 식품학계가 나서야할 과제이다. 쌀의 소비확대를 위해 가공기술을 개발하고 현대의 생활방식에 맞는 제품들을 생산해 내는 일도 중요하다. 유통기한에 대한 오해를 풀어주고 상미기한과 소비기한을 병기하여 음식물 쓰레기 발생량을 줄이는 제도개선도 시급히 요구되고 있다. 우리나라 식품과학계는 그 동안 식품 제조가공에 필요한 과학기술을 연구하고 산업에 적용하는 방법들을 개발하여 우리나라 식품산업을 세계적인 수준으로 끌어올리는데 중추적인 역할을 했다. 이제 앞으로 예견되는 세계 식량위기에 대해서도 우리나라 식품학계가 선도적인 역할을 하리라고 믿는다. 새로운 과학기술을 쉽게 수용하지 못하는 소비자들에게 신기술에 대한 확신과 신뢰를 심어주는 일이 무엇보다 시급하다.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

타이타늄 밀링/터닝 스크랩의 절삭공구 소재화 (Chipped Titanium Scraps as Raw Materials for Cutting Tools)

  • 권한중;임재원
    • 자원리싸이클링
    • /
    • 제30권2호
    • /
    • pp.61-67
    • /
    • 2021
  • 밀링 및 터닝 가공 중 발생되는 칩 형태 타이타늄 스크랩을 세라믹스 원료로 활용하기 위한 연구를 수행하였다. 우선, 칩 형태 타이타늄 스크랩에 포함되어 있는 다량의 절삭유와 철 성분 제거를 위해 유기세정 및 산 세정 과정을 거쳐 스크랩 표면 세척을 진행하였다. 아세톤과 질산을 사용한 세정 과정을 통해 스크랩 내 유기물과 철 함량은 5 wt.% 수준에서 0.07 wt.% 이하로 감소하는 것을 확인하였고 세정에 이어진 산화 과정을 통해 타이타늄 스크랩은 이산화타이타늄화 되었다. 타이타늄 스크랩의 이산화타이타늄화 과정은 800 ℃ 이상의 온도에서 이루어졌으며 이산화타이타늄은 고에너지 밀링 과정을 통해 나노 결정립으로 미세화되어 탄소에 의한 환원 및 탄화 반응은 기존 이산화타이타늄 탄화환원 온도인 1500 ℃보다 낮은 1200 ℃에서 가능하게 되었다. 이산화타이타늄 탄화환원을 통해 얻어지는 타이타늄 탄화물은 질소 및 타이타늄 이외 전이금속 원소의 첨가 및 고용을 통해 물성이 개선될 수 있었다. 타이타늄 탄화물 내 질소 첨가 및 고용상 형성 가능성은 열역학 계산을 통해 예측되었고 질소 첨가 및 전이금속 고용에 의해 타이타늄 탄화물의 특성 중 경도 및 파괴인성 제어가 가능하였다.

쌀 전처리를 달리한 증류주의 품질특성 (Quality Characteristics of Distilled Soju with Different Pretreatment of Rice)

  • 이승은;강지은;임보라;강희윤
    • 한국식생활문화학회지
    • /
    • 제37권6호
    • /
    • pp.555-563
    • /
    • 2022
  • The purpose of this study was to confirm the quality characteristics of distilled soju with different rice pretreatment processes. The non-steamed fermentation method is a technology that uses starch to produce saccharification and alcohol without going through the steaming of raw materials. It has advantages such as reduction of manpower and cost, prevention of nutrient loss, and minimization of waste water. In this study, rice used were non-steamed and pulverized 'Baromi2', nonsteamed and steamed 'Samgwang', and puffed rice. As the fermenting agent, koji, modified nuruk, N9 yeast, and purified enzyme were used, and lactic acid was added to prevent contamination during fermentation. The amount of water was 300% in total, and after the first watering, 5 days after fermentation, the second watering was carried out. As a result of the study, it was confirmed that the non-steamed fermentation method using 'Baromi' was superior to the existing fermentation method in terms of temperature during fermentation, final alcohol content, soluble solids, and pH. By expanding the stability of the production technology of non-steamed fermentation technology, product quality improvement can be expected.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.