• Title/Summary/Keyword: waste rates

Search Result 457, Processing Time 0.023 seconds

A Study on the Estimation Method of the Repair Rates in Finishing Materials of Domestic Office Buildings (국내 업무시설 건축 마감재의 수선율 산정 방안에 관한 연구)

  • Kim, Sun-Nam;Yoo, Hyun-Seok;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2015
  • Business facilities among domestic architectures have rapidly been constructed along with domestic economic development. It is an important facility taking the second largest proportion next to apartment buildings among current 31 building types of fire department classification of 2012 year for urban architectures. The expected service life of business facilities is 15 years, but 70% of those in urban areas have surpassed the 15 year service life as of the present 2014. Thus, the demand for urgent rehabilitation of such facilities is constantly increasing due to the aging and performance deterioration of the facilities'main finishing materials. Especially, the business facilities are being used for the lease of company office or private office, and such problems as aging and performance deterioration of the facilities could cause less competitive edge for leasing and real estate value depreciation for the O&M (Operation & Management) agent and the owner, respectively. Therefore, an effective planned rehabilitation as a preventive measure according to the standardized repair rate by the number of years after the construction is in need in order to prevent the aging and performance deterioration of the facilities(La et al. 2001). Nonetheless, domestic repair/rehabilitation standards based on the repair rate are mainly limited to apartment buildings and pubic institutions, resulting in impractical application of such standards to business facilities. It has been investigated and analyzed that annual repair rate data for each finishing material are required for examination of the applicability of the repair rate standard for the purpose of establishment of a repair plan. Hence, this study aimed at developing a repair rate computation model for finishing materials of the facilities and verifying the appropriateness of the annual repair rate for each finishing material through a case study after collecting and analyzing the repair history data of six business facilities. The results of this study are expected to contribute to the planning and implementation of more efficient repair/rehabilitation budget by preventing the waste of unpredicted repair cost and opportunity cost for the sake of the business facilities' owners and O&M agents.

Microbial degradation and other methods for accelerated degradation the Herbicide Imazapyr (제초제 Imazapyr 의 미생물에 의한 분해 및 기타 방법에 의한 분해 촉진)

  • Lee, Jae-Koo;Kwon, Jeong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • The microbial degradation, photosensitizer-mediated photolysis, and bioceramic- accelerated degradation of the herbicide imazapyr were investigated using four types of soil. 1. Seven strains of microorganisms isolated from the soil A and the active sludge collected from the waste water disposal plant in CheongJu did not give any distinct degradation products in pure culture. When imazapyr (10ppm) was incubated for 14days with each of the 6strains of the known bacteria, they did not produce any noticeable products, either, suggesting that imazapyr was degraded very little by microorganisms in aqueous media. Meanwhile, when 50ppm of imazapyr was incubated in soil A and B for 6months, a degradation product of m/z 279 was detected. It turned out to be 2-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]nicotinic acid, which was formed by the hydrolytic cleavage of the imidazolinone ring and by tautomerism. When imazapyr was exposed to sunlight, degradation rates were 14.6% under the control and 66.0, 76.5, 26.7, and 90.0% in the presence of PS-1 (100ppm), PS-1 (200ppm), PS-2(100ppm), and PS-3(100ppm), respectively, and a degradation product of m/z 149 was tentatively identified in the treatment of PS-1. 2. When soil C and D treated with bioceramic were incubated for 7weeks, the $^{14}C$-activities of $^{14}CO_2$ evolved were 2.03 and 1.12% of the originally applied ones, respectively, whereas those in control soils without bioceramic were 1.88 and 0.82% showing no significant defferences.After 5 weeks, however,the differences in the amounts of $^{14}CO_2$ between the two treatments increased gradually, suggesting the bioceramic effect.

  • PDF

Selection of Superior Poplar and Willow Clones in Growth Performance and Adaptation Abilities at Sudokwon Landfill Site (수도권매립지에서 생장과 적응력이 우수한 포플러류 및 버드나무 클론 선발)

  • Koo, Yeong-Bon;Woo, Kwan-Soo;Yeo, Jin-Kie;Kim, Yeong-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.743-750
    • /
    • 2006
  • Poplars and willow were planted to identify suitable species and varieties for landfill reclamation at the Sudokwon Landfill Site in 1997. Survival rate, growth performance, vitality, visible foliar injury by pollutants, fungi, and leaf insects, and stem borer damage have been investigated for 10 clones of 4 poplar species and 2 clones of one willow species from 1997 to 2005. The average survival rates of poplar and willow clones were drastically decreased from 90% in 1997 to 53% in 2005. Among poplar species, Populus alba ${\times}$ P. glandulosa showed the highest mean survival rate of 66%, while Populus koreana ${\times}$ P. nigra var. italica and Populus euramericana were the lowest of 41%, respectively in 2005. Clivus, which is one of the clones from Populus alba ${\times}$ P. glandulosa, showed the highest survival rate of 73%. For mean height, Ec028 clone(P. euramericana) showed the highest of $11.2m{\pm}2.1m$ and followed by Clivus of $11.0m{\pm}2.0m$. Clone 131-27(Salix alba) was the lowest of $7.8m{\pm}1.6m$. Vitality, defoliation, visible foliar damage, and stem borer damage were significantly different among clones. Most of Populus alba ${\times}$ P. glandulosa and Salix alba clones seemed to have strong vitality and to be tolerant to various stresses at the site. However, Populus nigra ${\times}$ P. maximowiczii was sensitive to the stress. We have selected 5 clones in total: Clivus as the best clone for waste landfill reclamation, and additionally two Salix clones 131-25, 131-27 and two clones of Populus alba ${\times}$ P. glandulosa (72-9, 72-16) have been selected. These five clones could be supplied for planting at sites having an environment similar to the Sudokwon Landfill Site.

The Process Efficiency Evaluation of the Food Supernatant Using A/G (Acid/Gas) Phased Anaerobic Digestion (산/가스 분리 혐기소화공정을 이용한 음식물 탈리액의 처리효율 평가)

  • Bae, Jong-Hun;Park, Noh-Back;Tian, Dong-Jin;Jun, Hang-Bae;Yang, Seok-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.214-222
    • /
    • 2012
  • Several acidogenesis batch tests, and BMP (Biochemical Methane Potential) with food waste leachate was tested at various organic loading rates (OLRs) on the mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) conditions. In acidogenesis batch test, VS removal efficiencies were 27.3% and 30.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. Removal efficiency of VS at $55^{\circ}C$ was higher than that at $35^{\circ}C$. With decrease in VS, SCOD increased as reaction time increased. Solubilization efficiency of VS were 27.4% and 33.4% at each reaction temperature within 4 days acid fermentation. Methane yield were 461 and 413 $mLCH_4/gVS$ at mesophilic and thermophilic BMP test, respectively. SCOD solubilizations in the themophilic acid fermenter showed 8~17% higher than those in the mesophilic fermenter. COD removal efficiency showed higher in the mesophilic acid fermenter at low organic loading rate. While at high organic loading rate, it was higher in the thermophilic acid fermenter. VS removal efficiency was higher at the mesophilic temperature, however, it decreased at OLR higher than 6 kg $COD/m^3{\cdot}day$. On the contrary, VS removal efficiency did not decrease but maintain at thermophilic temperature. The amount of methane gas generated from mesophilic methanogenesis digester was 12.6, 21.6, 27.4 L/day at OLR of 4, 5, 6 $COD/m^3{\cdot}day$, respectively. The amount of methane gas generated from themophilic methanogenesis digester was 14.3, 20.6, 25.2 L/day at each OLR, respectively, which is about 15~20 L/day lower than those generated at mesophilic digester.

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Rationalization of Fertilizing and Development of Fetilizer (시비(施肥)의 합리화(合理化)와 비종개발(肥種開發))

  • Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • The objective of this paper is to review the changes in fertilizer use pattern and to discuss some aspects of the fertilizer development in Korea. Fertilizer consumption in Korea have steadily increased to triple the application rates of N, P and K during the 15 years from 1965 to 1980, and Korea became one of the countries which apply fertilizers at the highest rate. The ratio of N: $P_2O_5$: $K_2O$ in fertilizer consumption changed from 55.4 : 31.4 : 13.1 in 1965 to 54.0 : 23.8 : 22.2 in 1980. It can be said that Korean farmers practise a balanced fertilization at least in view of fertilizer consumption as compared to other developing countries. However, differences in soil properties, crops, and climate varying as region were not reflected on fertilization. In the technological development of fertilizer, the chemical form and composition of the fertilizer as well as the suitability to the specific crops must be taken into consideration for the efficient use of fertilizers. Although organic fertilizers and manure are accepted as minor element suppliers, it is necessary to add minor elements into chemical fertilizers on the industrial process. Industrial waste may be used for the agricultural production as a measure of pollution control providing careful study on the waste.

  • PDF

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF