• Title/Summary/Keyword: waste fuel

Search Result 1,746, Processing Time 0.057 seconds

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

The Characteristics of Spray and Exhaust Emissions Environmental Assessment of Adulteration and Convention Diesel (유사경유 및 정상경유 미립화특성과 배출가스 환경성평가)

  • Lee, Jong-Tae;Moon, Sun-Hee;Kim, Jeong-Soo;Kim, Sun-Moon;Park, Gyu-Tae;Lim, Yun-Sung
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.106-111
    • /
    • 2013
  • Adulterations fuel have been using in the vehicle in these days. Because gasoline, diesel prices are rising every day. so people find more cheap price fuel. Adulterations fuel caused a serious air pollution problems. Adulteration fuel were made from waste engine oil, waste paint. According to Government regulations permit to be used recycle fuel(adulteration fuel) only in industrial boiler. Unburned fuel pollutants are effected to human health. In this paper, the hazardous air pollutants characteristics in the diesel vehicles according to adulterations of vehicle fuels were carried out in the NEDC test mode in chassis dynamometer. It is revealed that the all of the regulation pollutants (THC, NOx, CO and PM) emission in the adulterations of vehicle fuels was increased also the green house gas, $CO_2$ was increased. In the hazardous air pollutants characteristics, the VOCs(Volitile Organic Compounds) BTEX(Benzene, Toluene, Ethylbenzene, Xylene) emissions in the adulterations of vehicle fuels showed higher level than these in the diesel fuels.

Analysis on the heat-resisting method of the electrolytic metal reduction reactor in the test facility for the spent fuel waste (사용후핵연료 시험시설에서 전기 금속 전환반응기의 내열 방안 분석)

  • 김영환;윤지섭;정재후;홍동희;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.776-779
    • /
    • 2003
  • To reduce the storage space of spent fuel used at the atomic power plants in the over the world, the uranium elements contained in the spent fuel is being extracted and effectively stored. For this, the spent fuel are oxidized and deoxidized. In this study, it is produced the heat-resisting methods about the spent fuel management technology research and test facility for the spent fuel waste for spent fuel minimized. The first considered processes in the facility are the electrolytic metal reduction reactor process. Since the electrolytic metal reduction reactor is operated at the high temperature range, we have to consider the heat-resisting methods for the devices. For the heat-resisting methods, we have searched and analyzed technical reference for the heat-resisting methods. We have calculated thermal stress and strain of each devices by the commercial analysis software, ANSYS. D.S. It is experimented for inspecting confidence rate of analysis results. By using the results, we have analyzed the problems of parts and determined the heat-resisting material, commercial parts, and the size of parts and O-ring. Based on these results, it is produced the heat-resisting methods of magnesia filter, cathode, and reactor for the electrolytic metal reduction reactor.

  • PDF

Thermal Analysis of a Spent Fuel Storage Cask under Normal and Off-Normal Conditions (사용후핵연료 저장용기의 정상 및 비정상조건에 대한 열해석)

  • Ju-Chan Lee;Kyung-Sik Bang;Ki-Seog Seo;Ho-Dong Kim;Byung-Il Choi;Heung-Young Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 $^{\circ}C$ under the normal condition. The off-normal condition has an environmental temperature of 38 $^{\circ}C$. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.

  • PDF

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.

Recent Progress of the DUPIC Fuel Fabrication in Korea

  • Lee, J.W.;Kim, W.K.;Lee, Jae-W.;Park, G.I.;YANG, M.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.170-181
    • /
    • 2004
  • DUPIC powder and pellets were successfully fabricated in accordance with the quality assurance program described in the Quality Assurance Manual for DUPIC fuel fabrication, which was developed on the basis of the CAN3-Z299.2-85 standard. This manual describes the quality management system applicable to the activities performed for DUPIC fuel fabrication. It covers the work processes, policies and procedures used for planning, executing, and verifying the work carried out for DUPIC fuel fabrication. It is important that a Quality Program is in place before the fabrication of the fuel for irradiation testing. In order to qualify the DUPIC pellet manufacturing processes, 3 series of experiments for the pre-qualification and 3 series for the qualification were performed. In these experiments, the optimum process conditions were established. Then, under the control of the QA program, 8 series of production runs were performed to make the qualified DUPIC pellets in a batch size of 1 kg. In these production runs, DUPIC fuel pellets satisfying the standard CANDU fuel pellet specifications could be successfully produced.

  • PDF

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.

Validation of Radioanalytical Techniques for Nuclear Waste Characterisation

  • Warwick, Phillip E.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.363-373
    • /
    • 2019
  • Waste characterisation associated with nuclear site decommissioning relies on radiochemical analysis of a diverse range of sample types, requiring extensive validation of analytical techniques using matrix-matched materials. The absence of relevant reference materials has hindered robust method development and validation. The paper discusses how method validation in support of nuclear waste characterisation can be achieved without using reference materials. The key stages in an analytical procedure are evaluated and a multi-stage approach is proposed with the ultimate aim of determining an operational envelope for an analytical procedure.

Combustion Characteristics of Synthesis Gas Generated in Waste Pyrolysis Process (폐기물 열분해과정에서 발생된 합성가스의 연소 특성)

  • Ahn, Yong-Soo;Hwang, Sang-Soon;Lee, Sung-Ho;Lee, Hyup-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.143-150
    • /
    • 2003
  • The synthesis gas generated in waste pyrolysis melting process which consists of pyrolysis of waste and melting process of ash is known to be an alternative fuel. Since the compositopn of synthesis gas is much different from other synthesis gases, the fundamental combustion characteristics are analyzed in this study. The radiation heat heat flux is used to estimate the heat flux from flames made by many combinations of fuel and oxidant supply. The results show that the synthesis gas needs much more amount of oxidant for equivalent heat flux to methane flame and the inverse diffusion flame type for synthesis gas burner is suitable for better radiation heat transfer.

  • PDF

An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine (염소를 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학 평형 계산)

  • ;;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3372-3381
    • /
    • 1995
  • An equilibrium analysis was carried out to determine principal species of heavy metals in waste incineration and their behaviors with variation of temperature, chlorine concentration, excess air ratio, and C/H ratio. The waste was assumed as a compound of hydrocarbon fuel, chlorine, and metals. Calculated results showed that the most important parameter to determine the principal species was temperature. Chlorine concentration also affected on mole fractions of the principal species. Generally principal species at high temperature were chlorides while there were some metals of which principal species were oxides. At low temperature mole fractions of the principal species increased, but at high temperature mole fractions of some metal species decreased. C/H ratio of the hydrocarbon fuel and excess air ratio had little effect on mole fractions of the metal species, compared to the temperature and chlorine concentration.