• Title/Summary/Keyword: waste fuel

Search Result 1,746, Processing Time 0.021 seconds

Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.529-542
    • /
    • 2019
  • Nowadays, drying methods for municipal solid waste quality improvement have been adopted in the developed and developing countries to valorize wastes for a renewable energy source, reduce dependency on fossil fuel and keep safer disposal at landfills. Among them, biodrying, biostabilization, thermal drying and solar drying are the most common. Drying of municipal solid waste could offer several environmental and economic benefits. Therefore, this review highlighted the drying methods for municipal solid waste quality improvement around the world and compared them based on the reduction of moisture, weight and volume of municipal solid wastes against drying temperature and time by using statistical analysis. It was observed that the drying temperature of different drying methods accounted for 115 ± 40℃ for thermal drying, 59 ± 37℃ for solar drying, 55 ± 15℃ for biodrying and 58 ± 11℃ for biostabilization. Among the drying methods, thermal drying provided the shortest drying time. The moisture reduction, weight reduction, volume reduction and heating value increase of municipal solid waste could vary with drying temperature and time. Finally, the benefits and drawbacks of different drying methods were specified, and recommendations were made for the future efficient drying.

Evaluation of Core Residence Time of Fuel Cruds from Hanul Unit 1 Cycle 17 (한울1호기 17주기 연료 크러드의 노내 체류시간 평가)

  • Lee, Doo Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.211-216
    • /
    • 2014
  • Corrosion products are released to the primary coolant in the corrosion process of structural materials. They are deposited on fuel surfaces and activated on exposure to a neutron flux with formation of radionuclides that can become incorporated into out-of-core surface films. To get a clear understanding of activated crud formation process, the specific activity and core residence time of fuel cruds was calculated as a function of exposure time to the core neutron flux on the assumption that parent nuclide is being deposited continuously. Fuel cruds were sampled in the fuel scraping campaign from Hanul Unit 1 Cycle 17 and analyzed for elemental concentration and radioisotope activity.

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

SFR DEPLOYMENT STRATEGY FOR THE RE-USE OF SPENT FUEL IN KOREA

  • Kim, Young-In;Hong, Ser-Ghi;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.517-526
    • /
    • 2008
  • The widespread concern regarding the management of spent fuel that mainly contributes to nuclear waste has led to the development of the sodium-cooled fast reactor (SFR) as one of the most promising future types of reactors at both national and international levels. Various reactor deployment scenarios with SFR introductions with different conversion ratios in the existing PWR-dominant nuclear fleet have been assessed to optimize the SFR deployment strategy to replace PWRs with the view toward a reduction in the level of spent fuel as well as efficient uranium utilization through its reuse in a closed fuel cycle. An efficient reactor deployment strategy with the SFR introduction starting in 2040 has been drawn based on an SFR deployment strategy in which burners are deployed prior to breakeven reactors to reduce the amount of PWR spent fuel substantially at the early deployment stage. The PWR spent fuel disposal is reduced in this way by 98% and the cumulative uranium demand for PWRs to 2100 is projected to be 445 ktU, implying a uranium savings of 115 ktU. The SFR mix ratio in the nuclear fleet near the year 2100 is estimated to be approximately 35-40%. PWRs will remain as a main power reactor type until 2100 and SFRs will support waste minimization and fuel utilization.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

Development of the Vacuum Drying Process for the PWR Spent Nuclear Fuel Dry Storage (경수로 사용후핵연료 건식저장을 위한 진공건조공정 개발)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process).

A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication (우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • This study Provides the treatment methods of liquid wastes from the dissolution/purification process of nuclear fuel raw material and the fabrication process of nuclear fuel powder. One of the treatment methods is to process liquid waste from uranium raw material dissolution/purification process. This waste, of the strong acid, can be reused to dissolve the fine ADU particles in filtrate which is ADU waste of pH 8.0 converted from AUC waste after recovery of uranium. To dissolve the fine ADU particles, ADU filtrate was pretreated to pH 4.0 with the dissolution/purification waste, and then mixed with the lime to pH 9.2 and aged for 30 minutes. From this processing, uranium content of the filtrate was decreased to below 3ppm. The waste from fuel powder fabrication is emulsified solution dispersed with fine oil droplets. This emulsion was destroyed effectively by adding and mixing the nitric acid with rapid heating at the same time. After this processing, $Na_2U_2O_7$ compound is produced by addition of NaOH. Optimum condition of this processing was shown at pH 11.5, and uranium content of the filtrate was analyzed to 5ppm. To remove the trace of uranium in the filtrate, lime should be added. Otherwise, 4N nitric acid was used to destroy the emulsion directly, and then lime was added to this waste. Uranium content of the treated filtrate was below 1 ppm. In addition to these wastes, the trace of uranium in filtrate after recovery of uranium from the AUC waste which is produced during PWR power preparation, is treated with NaOH to takeup fluorine(F) in the waste because fluorine is valuable and toxic material. In the finally treated waste, uranium was not detected.

  • PDF

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF