• Title/Summary/Keyword: waste fish entrails

Search Result 3, Processing Time 0.016 seconds

Amino Acids Recovery from Fish Entrails by Hydrolysis in Sub- and Supercritical Water (생선내장의 아임계 및 초임계 가수분해에 의한 아미노산의 회수)

  • Kang, Kil Yoon;Kim, Yong Ha;Chun, Byung Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • A resource recovery technique using sub- and supercritical water hydrolysis was applied to recover amino aicds from waste fish entrails. The effect of reaction parameters such as temperature and time necessary for the control of reaction towards optimum yield of amino acids was investigated using semi-batch and batch reactors. Results showed a maximum yield of total amino acids (137 mg/g-dry entrails) from waste fish entrails at T=$250^{\circ}C$ (P=4 MPa) and reaction time of 60 min in a batch reactor. Under supercritical conditions (e.g., T=$400^{\circ}C$, P=45 MPa), the yield decreased due to rapid decomposition compared to production rate of amino acids. As a result, the low temperature and the short reaction time were needed to produce a maximum yield of amino acids.

Study on bio-gas production efficiency from industrial organic waste (산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구)

  • Lee, Horyeong;Jin, Hyoeon;Shin, Daeyewn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

Carboxylic Acids Produced from Hydrothermal Treatment of Organic Wastes (유기성 폐기물의 고온고압수 반응에 의한 카르복시산 생성)

  • 강길윤;오창섭;김용하
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.228-233
    • /
    • 2004
  • This paper reports production of low-molecular weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds with or without oxidant (H$_2$O$_2$). Organic acids such as acetic, formic, succinic and lactic acids were obtained. This result increased to 42mg/g dry waste fish entrails in the presence of H$_2$O$_2$. Experiments on glucose representing cellulosic wastes were also carried out, getting acetic acid of about 29mg/g glucose. Studies on temperature dependance of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general. results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.