• 제목/요약/키워드: waste disposal

검색결과 1,505건 처리시간 0.034초

Lifespan assessment of piezoelectric sensors under disposal condition of high-level nuclear waste repository

  • Changhee Park;Hyun-Joong Hwang;Chang-Ho Hong;Jin-Seop Kim;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.529-539
    • /
    • 2024
  • A high-level nuclear waste (HLW) repository is designed for the long-term disposal of high-level waste. Positioned at depths of 500-1000 meters, it offers an alternative to the insufficient storage space for spent fuels, providing a long-term solution. High-level waste emits heat and radiation, causing structural deterioration, including strength reduction and cracks. Therefore, the use of piezoelectric sensors for structural health monitoring is essential for evaluating the safety of the structure over time. Unlike other structures, the HLW repository restricts human access after the disposal of HLW, rendering sensor replacement impossible. Therefore, it is necessary to assess both the lifespan and suitability of sensors under the disposal conditions in the HLW repository. This study employed an accelerated life test (ALT) to assess the sensor's lifespan under disposal conditions. Failure modes, failure mechanisms, and operational limits were analyzed through accelerated stress test (AST). Additionally, the parameters of the Weibull life probability distribution and the Arrhenius accelerated life model were estimated through statistical methods, including the likelihood ratio test, maximum likelihood estimation, and hypothesis testing. Results confirmed that the sensor's lifespan decreases significantly with the increase in the temperature limit of the HLW repository. The findings of this study can be used for improving sensor lifespan through shielding, development of alternative sensors, or lifespan evaluation of alternative monitoring sensors.

경북지역 학교급식에서의 쓰레기 관리에 관한 연구 (The Study on Solid Waste Management in School Foodservices in the Kyungbuk Area)

  • 정상렬;이혜상
    • 대한지역사회영양학회지
    • /
    • 제6권5호
    • /
    • pp.837-847
    • /
    • 2001
  • The main purposes of this study were to survey and assess the current situation surrounding solid waste generation in school foodservices, to identify and evaluate the measures(reduction and recycling programs) taken by the foodservices for waste disposal, and to suggest appropriate reform measures to improve the current status, especially in terms of environmental preservation. Questionnaires on solid waste management practices were mailed to 206 school foodservice dietitians in the Kyungbuk region : a 64.0%(N = 130) response rate was obtained. While there are food waste and packaging waste generated from the foodservice operations, about a third(34.1%) of the foodservice operations were responsible for the disposal of both the food wastes and packaging wastes. About 90% of school foodservice managers were responsible for managing solid wastes. The primary recycling methods of leftovers generated from the school food service operations were livestock feed(76.0%). About 60.0% of school foodservice managers conducted the food waste reduction program. The performance by the foodservice managers in reducing the food waste was not satisfactory in several fields, such as developing environmentally friendly menus or abiding by the standard recipe, etc. In addition, the government assistance system was not properly working in the food service management. In conclusion, we should focus on increasing the performance in reducing the food waste by the foodservice managers, strengthening and facilitating the government assistance system for the food waste management and to develop education methods and education materials for food waste management.

  • PDF

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • 방사성폐기물학회지
    • /
    • 제15권4호
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

중.저준위 방사성폐기물의 천층처분을 위한 인공방벽 실증시험시설의 건설 및 운전 경험 (Construction and Operational Experiences of Engineered Barrier Test Facility for Near Surface Disposal of LILW)

  • Jin-Beak Park;Se-Moon Park;Chang-Lak Kim
    • 방사성폐기물학회지
    • /
    • 제2권1호
    • /
    • pp.23-34
    • /
    • 2004
  • To validate the previous conceptual design of cover system, construction of the engineered barrier test facility is completed and the performance tests of the disposal cover system are conducted. The disposal test facility is composed of the multi-purpose working space, the six test cells and the disposal information space for the PR center. The dedicated detection system measures the water content, the temperature, the matric potential of each cover layer and the accumulated water volume of lateral drainage. Short-term experiments on the disposal cover layer using the artificial rainfall system are implemented. The sand drainage layer shows the satisfactory performance as intended in the design stage. The artificial rainfall does not affect the temperature of cover layers. It is investigated that high water infiltration of the artificial rainfall changes the matric potential in each cover layer. This facility is expected to increase the public information about the national radioactive waste disposal program and the effort for the safety of the planned disposal facility.

  • PDF

중·저준위 방사성폐기물 처분시설을 위한 Safety Case 종합프로그램의 개발 (Development of the Safety Case Program for the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea)

  • 박진백;정종태;박주완
    • 방사성폐기물학회지
    • /
    • 제12권4호
    • /
    • pp.335-344
    • /
    • 2014
  • 우리나라 중 저준위 방사성폐기물의 처분시설개발을 위해 Safety Case 종합프로그램을 구축하였다. Safety Case 종합프로그램은 단계별 처분시설 종합개발을 위한 안전성판단과 계획수립을 목적으로 IAEA 등 국제기준을 참고하여 국내 환경에 적합하도록 구축하였다. 처분시설 종합안전성 확보체계는 최적화전략, 강건성전략, 논증가능성전략 및 심층방어전략에 따라 안전목표와 안전원칙을 만족하도록 구성하였다. 처분시설의 안전성은 평가기반의 품질에 따라 불확실성 저감을 위한 단계별 안전성평가와 안전성 수준의 확인 및 의사결정판단을 위한 다양한 신뢰성증진을 통해서 확보하도록 하였다.

고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성 (Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation)

  • 윤석;김건영;박태진;이재광
    • 한국지반공학회논문집
    • /
    • 제33권10호
    • /
    • pp.25-31
    • /
    • 2017
  • 완충재는 고준위폐기물을 처분하기 위한 공학적방벽 시스템에서 중요한 구성요소 중 하나이다. 완충재는 처분공내 사용후핵연료가 담긴 처분용기와 암반사이에 채워지는 물질로써 고준위폐기물의 안전한 처분을 위해 필수적인 요소라고 할 수 있다. 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분용기로부터 발생하는 고온의 열량은 완충재로 전파되기에 완충재의 열물성은 처분시스템의 안전성 평가에 매우 중요하다고 할 수 있다. 특히, 완충재의 설정온도는 고준위폐기물 처분시설의 설계에 큰 영향을 끼칠 수 있다. 따라서 본 연구에서는 온도변화에 따른 국내 경주산 압축 벤토나이트 완충재에 대한 열물성을 규명하고자 하였다. 열선법과 이중 탐침법을 이용하여 온도변화에 따른 압축 벤토나이트 완충재의 열전도도와 비열을 측정하였다. $22^{\circ}C$$110^{\circ}C$ 구간에서는 온도 증가에 따라 포화도가 변화되기에 열전도도와 비열은 급격하게 감소하는 경향을 보였으나 $110^{\circ}C$$150^{\circ}C$ 사이의 고온 구간에서는 열전도도와 비열의 추가 변화가 거의 발생하지 않았다.

파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구 (A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing)

  • 이종열;이민수;최희주;배대석;김경수
    • 방사성폐기물학회지
    • /
    • 제10권3호
    • /
    • pp.219-228
    • /
    • 2012
  • 우리나라에서의 고준위폐기물 처분을 위한 연구는 1997년부터 시작하였으며, 국내에서 발생하는 경수로 사용후핵연료와 중수로 사용후핵연료를 처분대상으로 하여 2006년도에는 한국형 사용후핵연료 기준처분시스템(KRS) 개발을 완료하였다. 이후, 경수로 사용후핵연료로부터 재활용 가능물질을 회수하는 재순환주기를 고려하여 재활용을 위한 파이로공정 연구를 수행하고 있어, 이 공정으로부터 발생하는 고준위폐기물에 대한 처분연구를 수행하고 있다. 본 논문에서는 심지층 처분시스템 개념설정에 중요한 인자인 파이로공정으로부터 발생하는 처분대상 폐기물인 세라믹고화 폐기물과 금속폐기물에 대한 특성분석 결과와 폐기물별로 특성에 적합한 처분용기 개념을 기술하였다. 이를 바탕으로 처분대상 폐기물에서 발생하는 붕괴열의 특성을 고려한 열해석을 통하여 지하처분시설에서의 처분용기 간격과 처분동굴 간격을 결정하고, 이를 반영하여 심지층 처분 시스템(A-KRS) 개념을 도출하였다. 이렇게 도출된 처분시스템 입지를 검토하기 위하여 KURT 시설 부지를 대상으로 가상부지로 설정하고, 가상 부지에 대한 지질 및 수리특성을 이용하여 최적의 배치(안)을 제시하였다. 본 연구의 결과는 추후 실제 부지특성자료와 연계하여 처분장 설계 및 처분안전성 평가에 입력자료로 활용될 것이다.

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.

폭발물 처리 구조물의 내부폭발 영향 제어에 관한 연구 (A Study on Controlling the Effects of the Internal Explosion of the Explosive Disposal Structure)

  • 강영철;최정욱
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.204-212
    • /
    • 2000
  • The waste ammunitions have been accumulated in excessive amounts these days. This study focused on the problems related to the method of ammunition disposal which leads the explosion inside the enclosure structure and controls the effects of detonation. This study enables us to design a new type of explosive disposal facilities that would fit to our environments. And this study gives us the prototype design of the explosive disposal structure that are explored in this research and will give us a chance to develop a new type structure that have not been devised by Army, and also will be applicable to construct a civilian explosive disposal structure located in airports, harbors, and public facilities.

  • PDF

TNT 처리에 관한 연구동향 (Review on TNT Disposal)

  • 박재현;신원모;이재우
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.127-143
    • /
    • 2016
  • Over the decades, TNT has been produced indiscriminately to be utilized in many fields owing to its ability to manipulate the explosion. Yet, the proper technique for disposal of TNT and the waste residues had not been developed so that the large amount of TNT waste was being piled up. Upon the agreement to demilitarization of old weapon, a study on the disposal methods for TNT and the waste treatment have been raised for their dangerous nature. Since then, from burying in landfill to utilizing supercritical fluid-based oxidation, a lot of research is actively ongoing, but little progress has been made in Korea compared to developed countries. This review paper covers all the technologies developed for TNT and its waste disposal including the concept, advantage, and disadvantage of those technologies. Also, suggested here are the future research directions.