• 제목/요약/키워드: waste combustion

검색결과 349건 처리시간 0.028초

저발열량 가스 연소를 위한 선회연소시스템 개발 (Development of cyclone combustion system for combustion of low calorific value gases(LCVG))

  • 이시훈;임영준;현주수;손영준;천석현;한광조
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • 저발열량 가스(LCVG : low calorific value gases)는 석탄 가스, coke oven gas, carbon black waste gas, 화학공정 폐가스, 휘발성 유기화합물(VOC) 등 다양하다. 발열량 150~2,000㎉/m$^3$정도의 가스를 말하며 주요 조성은 H$_2$, CO, CH$_4$ 등이다. 화학공정 폐가스나 휘발성 유기물질 배출공정에서는 저농도(LEL 25% 이하)의 유기물질이 주 조성이다.(중략)

  • PDF

자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구 (An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

폐기물 소각시 생성되는 유해 중금속물질과 연소실내 비산재와의 응축, 응집 현상에 대한 연구 (Condensation and coagulation of metallic species with fly ash particles in a waste incinerator)

  • 유주현;황정호
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.264-274
    • /
    • 1997
  • A numerical analysis on condensation and coagulation of the metallic species with fly ash particles pre-existing in an incinerator was performed. Waste was simplified as a mixture of methane, chlorine, and small amounts of Pb and Sn. Vapor-phase amounts of Pb- and Sn -compounds were first calculated assuming a thermodynamic equilibrium state. Then theories on vapor-to-particle conversion, vapor condensation onto the fly ash particles, and particle-particle interaction were examined and incorporated into equations of aerosol dynamics and vapor continuity. It was assumed that the particles followed a log-normal size distribution and thus a moment model was developed in order to predict the particle concentration and the particle size distribution simultaneously. Distributions of metallic vapor concentration (or vapor pressure) were also obtained. Temperature drop rate of combustion gas, fly ash concentration and its size were selected as parameters influencing the discharged amount of metallic species. In general, the coagulation between the newly formed metal particles and the fly ash particles was much greater than that between the metal particles themselves or between the fly ash particles themselves. It was also found that the amount of metallic species discharged into the atmosphere was increased due to coagulation. While most of PbO vapors produced from the combustion were eliminated due to combined effect of condensation and coagulation, the highly volatile species, PbCl$_{2}$ and SnCl$_{4}$ vapors tended to discharge into the atmosphere without experiencing either the condensation or the coagulation. For Sn vapors the tendency was between that of PbO vapors and that of PbCl$_{2}$ or SnCl$_{4}$. To restrain the discharged amount of hazardous metallic species, the coagulation should be restrained, the number concentration and the size of pre-existing fly ash particles should be increased, and the temperature drop rate of combustion gas should be kept low.

대전 4공단 소각로 후연소로 모델 연구 (Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex)

  • 김혜숙;신미수;장동순;박병수;엄태인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

Study on Emission Control for Precursors Causing Acid Rain (VI) : Suitability of Aquatic Plant Biomass as a Co-combustion Material with Coal

  • Hauazawa, Atsushi;Gao, Shidong;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권2호
    • /
    • pp.102-108
    • /
    • 2008
  • In China, energy and environmental problems are becoming serious owing to rapid economic development. Coal is the most problematic energy source because it causes indoor and outdoor air pollution, acid rain, and global warming. One type of clean coal technology that has been developed is the coal-biomass briquette (or bio-briquette, BB) technique. BBs, which are produced from pulverized coal, biomass (typically, agricultural waste), and a sulfur fixation agent (slaked lime, $Ca(OH)_2$) under high pressure without any binder, have a high sulfur-fixation effect. In addition, BB combustion ash, that is, the waste material, can be used as a neutralization agent for acidic soil because of its high alkalinity, which originates from the added slaked lime. In this study, we evaluated the suitability of alternative biomass sources, namely, aquatic plants, as a BB constituent from the perspective of their use as a source of energy. We selected three types of aquatic plants for use in BB preparation and compared the fuel, handling, and environmental characteristics of the new BBs with those of conventional BBs. Our results showed that air-dried aquatic plants had a higher calorific value, which was in proportion to their carbon content, than agricultural waste biomass; the compressive strength of the new BBs, which depends on the lignin content of the biomass, was high enough to bear long-range intracontinental transport in China; and the new BBs had the same emission control capacity as the conventional BBs.

티타늄 합금 폐기물의 연소 특성에 관한 실험적 연구 (Experimental study on the combustion characteristics of titanium alloy)

  • 이준식;남기훈
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.105-110
    • /
    • 2019
  • Most titanium alloy waste with cutting oil was discarded without recycling process so that it can be caused by metal and oil fires. However, there is no fire management system and studies on the titanium or titanium alloy waste in spite of high fire risk. The purpose of this experimental study is to identify the fire risk of the titanium alloy waste with cutting oil. We collected the 120g waste which was made in the biomedical titanium alloy cutting process. The waste was burned and conducted thermal image analysis with infrared camera. The experimental results which illustrated the process, characteristics, and trends of fire are presented. Firstly, the cutting oil was burned and partially the titanium alloy waste was burned. The maximum temperature of the fire was more than $650^{\circ}C$ in some specific spots. These results means when a lot of titanium alloy waste with cutting oil was ignited, this fire could connect the titanium fire. In other words, the fire has a flammable liquid fire and combustible metal fire at the same time. The experimental study could be used fire prevention, response, and investigation of the titanium alloy waste.

폐기물유래 촉매를 이용한 타르 개질에 관한 연구 (Study on Tar Reforming by Using the Catalyst Derived from Wastes)

  • 성호진;남성방;박영수;구재회
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.267-270
    • /
    • 2014
  • Since contaminants of syngas obtained from the biomass gasification are removed, the syngas is clean fuel. In this study a high-efficiency energy production system is developed. The system produces electricity using a waste pressure and feeds a low-pressure steam to Dyeing industrial complex. Also, iron oxide derived from dyeing sludge is utilized as a self-catalyst to reform a tar and reduce a tar emission from gasifier. This system increases the amount of syngas and finally achieves a highly efficient gasification.

  • PDF

구형축열체를 이용한 축열기의 성능예측 (Prediction of Performance in heat regenerator with spheres)

  • 조한창;조길원;이용국
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

A Study on Removal of Harmful, Heavy Metals in Fly Ash from Municipal Incinerator

  • Nakahiro, Yoshitaka
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.489-493
    • /
    • 2001
  • Big cities in Japan have serious problems due to the shortage of new reclaimed land for municipal wastes. If harmful heavy metals such as cadmium, lead, copper and etc. are contained in the municipal waste combustion residues, they are not able to fill up according to the environmental law in Japan. In this study, the removal of heavy metals in the fly ash (EP ash) was dealt with chloridizing vaporization method. EP ash as a non-hazardous materials is utilized as covering materials, road bed, and building materials.

  • PDF