• Title/Summary/Keyword: warm tolerant species

Search Result 11, Processing Time 0.017 seconds

The Effect of Hydrology on Phytoplankton Assemblages and Its Adaptive Strategies in Lake Hwaseong, Estuarine Reservoir with Seawater Exchange, Korea (해수유통 중인 간척담수호 화성호에서 식물플랑크톤의 군집과 적응전략에 대한 수문학적 영향)

  • Song, Tae Yoon;Yoo, Man Ho;Lee, In Ho;Kang, Eue-Tae;Kim, Mi Ok;Choi, Joong Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.71-81
    • /
    • 2014
  • A survey was carried out to understand the influence of hydrology on the composition, abundance and adaptive strategies of phytoplankton in artificial Lake Hwaseong, an estuarine reservoir with seawater exchange through a sluice. Samples were collected seven times from May to October 2012. Hydrological events (seawater exchange, rainfall) resulted in a wide variation in salinity along with nutrients and turbidity. Shifts in the dominant phytoplankton composition occurred on every survey. Chlorophyll-a ranged from 9.7 to $104.1{\mu}g\;L^{-1}$. Multivariate analysis allowed us to identify the four phases on phytoplankton community change. Phase I (May~June) was characterized by small-sized Gymnodinium sp. and Heterosigma akashiwo dominated in warm temperature and high salinity derived from seawater exchange, and followed by Cylindrotheca closterium blooms due to rainfall and winds during phase II (July and September). During phase III (August), the dominance of Oscillatoria spp. was correlated with high temperature and low salinity. Abundant cryptomonads were associated with lower temperature during phase IV (October). Adaptive strategies were identified in the phytoplankton as morphological and physiological characteristics. These strategies identified small-sized flagellates as CR-strategists, fast-growing opportunistic species, which might favor the weak stratification of lake due to the seawater exchange during phase I and IV. Dominant species during phase II and III were characterized with R-strategists, medium-sized stress-tolerant species, which might favor turbulence by river flow. The results indicate that stronger stratification following the termination of seawater exchange for the freshening might intensify the predominance of smaller flagellates. In conclusion, this study suggests that hydrology may drive phytoplankton community change and blooms through the controls of salinity, turbulence and nutrients.