• Title/Summary/Keyword: wall-frame building

Search Result 204, Processing Time 0.026 seconds

Proposal for Optimal Position of Offset Outrigger System (오프셋 아웃리거 구조시스템의 최적 위치에 대한 제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.84-91
    • /
    • 2019
  • For the goal of the proposal for optimum position of offset outrigger system, a structural schematic design of 70 stories building was carried out, using the general structure analysis program of MIDAS-Gen. In this research, the primary factors of this analysis research were the shear wall stiffness, the frame stiffness, the outrigger stiffness, the stiffness of column linked in outrigger system, etc. To achieve the aim of this study, we analyzed and studied the lateral displacement in top level, the force distribution of outrigger, the existing model of optimal outrigger location, and so on. This paper proposed the optimal position of offset outrigger system. Furthermore it is considered that the study results can be useful in getting the structure engineering data for seeking the optimal position of offset outrigger in the tall building.

Thermal Performance Assessment of Insulated door by experiment. (실측 실험을 통한 단열문의 열성능 평가)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.47-52
    • /
    • 2011
  • Currently, Exterior wall's U-value about building envelope is 0.36 W/$m^2K$(Central Region), but window's one is 2.1 W/$m^2K$ according to air gap of glazing, filling gas, coating and type of windows. The door"s one is 1.6~5.5 W/$m^2{\cdot}K$ depending on material and configuration of door. As such, energy loss per unit of door is considerably larger like windows. The door for the recognition was relatively low because energy loss through the door is relatively small compared to window area. In this paper, thermal performance was analyzed through simulation targeting the door which has thermal break that can improve the insulation performance and doesn't have one. As a results of simulations, case1 was calculated as the average of 1.63 w/m2k and case 2 was calculated as the average of 4.14 w/m2k. The thermal performance of door depends on the type and condition of insulations. As a results of final simulations, Case1 was calculated as 1.06 w/m2k and Case2 was calculated as 1.27 w/m2k. As a results of the experiments, thermal performance of case 1 was measured as 1.28 w/m2k. Error between experiments and simulations is considered problems encountered when creating the samples. The effect of door frame on the overall thermal performance is slight because it's a small proportion of the door frame.

A Historical Study on the Specifications of Traditional Handmade Roof-tile (전통수제기와 규격에 관한 고증 연구)

  • Jo, Sang-Sun
    • Journal of architectural history
    • /
    • v.23 no.6
    • /
    • pp.21-26
    • /
    • 2014
  • The purpose of this study is to retrospect the establishment process of specification of modern factory-made traditional Korean roof-tile. Its another purpose is to analyze the specification of watong(瓦桶, a wooden molding frame for roof tile making) which is recorded in the literature of Joseon dynasty. The results of this study are as follows. : First, the specification of modern factory-made Korean roof-tile that currently used was established in 1978. And it did not succeed old traditional specification. Second, in case of construction or repair of main building of palace, it was a principle to use Daewa(大瓦, the big size roof-tile). And Sangwa(常瓦, the ordinary size roof-tile) was used when needed. Also, Jungwa(中瓦, the middle size roof-tile) was used regardless of the size of group building. And Sowa(小瓦, the small size roof-tile) was used in house and wall of royal tomb. Third, it is needed to establish a specification of traditional handmade roof-tile based on the specification of watong through research of the litterateur. So, a standard draft for this was proposed. Finally, one can find the significance that this study has tried to find a specification of traditional roof-tile that can be applied to construction or repair of cultural heritage.

A Study on the Behavior Characteristics of Tsunami Damper for the Nuclear Power Plant (원자력 발전소용 쓰나미 댐퍼의 거동특성에 관한 연구)

  • Seo, Ji-Hwan;Kim, Byung-Tak;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2014
  • This study presents the mechanical behavior of a ventilating window (a tsunami damper) on the building wall of a nuclear power plant. The window, which is under development, is used to ventilate a machinery room and the building under normal conditions, but it also provides a safety barrier for critical equipment against a tsunami caused by an earthquake. A finite element analysis was conducted to investigate the deflection and the stress distribution of the window under given loading conditions. With symmetry, a one-quarter portion of one window was modeled, and the pressure due to a great tide is assumed to be 7 bar. A structural analysis of the assembled frame, composed of a blade and casing, was also conducted using contact conditions to find the stress and strain configurations caused by the applied pressure.

Application of a ductile connection system to steel MRF strengthened with hinged walls

  • Zhi Zhang;Yulong Feng;Dichuan Zhang;Zuanfeng Pan
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.487-498
    • /
    • 2024
  • Steel moment resisting frames (MRFs) typically have inter-story drift concentrations at lower stories during earthquakes as found from previous research. Hinged walls (HWs) can be used as structural strengthening components to force the MRFs deform uniformly along the building height. However, large moment demands are often observed on HWs and make the design of HWs non-economical. This paper proposes a method to reduce the moment demand on HWs using a ductile connection system between the MRFs and the HWs. The ductile connection system is designed with a yield strength and energy dissipation capacity, for the purpose of limiting the seismic forces transferred to the HWs and dissipating seismic energy. Nonlinear time history analyses were performed using 10 far-filed earthquakes at maximum considered earthquake level. The analysis results show that the proposed ductile connection system can reduce: (1) seismic moment demands in the HWs; (2) floor accelerations; (3) the connection force between HWs and MRFs.

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements (ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kang, Dae-Hyun;Ok, Il-Seok;Yun, Hyun-Do;Kim, Jae-Hwan;Yang, Il-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.541-549
    • /
    • 2015
  • This study was conducted to experimentally investigate the seismic retrofitting performance of non-ductile reinforced concrete (RC) frames by introducing engineered cementitious composite (ECC) wing panel elements. Non-ductile RC frame tested in this study were designed and detailed for gravity loads with insufficient or no consideration to lateral loads. Therefore, Non-ductile RC frame were not satisfied on present seismic code requirements. The precast ECC wing panels were used to improve the seismic structural performance of existing non-ductile RC frame. A series of experiments were carried out to evaluate the structural performance of ECC wing panel elements alone a non-ductile RC frame strengthened by adding ECC panel elements. Failure pattern, strength, stiffness and energy dissipation characteristics of specimens were evaluated based on the test results. The test results show that both lateral strength and stiffness were significantly improved in specimen strengthened than non-ductile RC frame. It is noted that ECC wing wall elements application on non-ductile RC frame can be effective alternative on seismic retrofit of non-ductile building.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Theoretical Models for Predicting Racking Resistance of Shear Walls (전단벽의 전단성능 예측 모형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.96-105
    • /
    • 2002
  • Shear wall is the most important component resisting lateral loads imposed to a building by wind or earthquake. In shear walls, lateral load applied to framing is transmitted to sheathing panel through nailed joints between sheathing and framing so that the load is resisted by in-plane shear strength of sheathing. Therefore, nailed joints are the most basic and important component in the viewpoint of stiffness and strength of shear walls. In this study, stiffness and strength of single nailed joint were measured by single shear tests of nailed joints and used as input for theoretical models developed to estimate racking behavior of shear walls. And shear walls were tested to check the accuracy of theoretical models estimating racking resistance of shear walls. Stiffness of nailed joint was affected by grain direction of stud but direction of sheathing panel had little effect. Behavior of nailed joint and shear walls under lateral loads could be represented by three lines. Theoretical model II was more accurate than theoretical model I in estimating racking behavior of shear wall under loads.

Vertical Distribution of Seismic Load Considering Dynamic Characteristics of Based Isolated Building Structures (면진건축물의 동적특성을 고려한 층지진하중 분배식의 제안)

  • 이동근;홍장미
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • In this study, the validity of the currently used seismic regulations for seismic isolated building structures is investigated, and a new formula for vertical distribution of seismic load is proposed. The distribution formula in UBC-91 did not provide sufficient safety, and thus revised in 1994. However it is pointed out that the revised formula overestimates the seismic load because of its similarity to that of the fixed-base structure. Therefore, in the proposed approach, it is intended to satisfy safety, economy, and applicability by combining the mode shapes of the seismic isolated structure idealized as two degrees of freedom system and those of fixed-base structure. For verification of the proposed formula, both a moment resisting frame and a shear wall system are analyzed. The results obtained from the proposed method turn out to be close to the results from a dynamic analysis.

  • PDF