• 제목/요약/키워드: wall mock-up test

검색결과 54건 처리시간 0.026초

The Experimental Study of Full-scale Centrifugal Formed High Strength Concrete Prismatic Beam(CFPB) Composited with Deck Slab (상부 슬래브와 합성된 원심성형으로 제작된 초고강도 각형보의 실험연구 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제27권1호
    • /
    • pp.19-29
    • /
    • 2023
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the watertightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures such as silica fume. The ultra-high strength centrifugal shaped square beam installed on the wall is composited with the upper slab concrete and then subjected to a service load. Horizontal shear stress is generated by bending between the centrifugal molding beam and the floor plate, which causes the beam and floor plate to perform composite behavior through shear connections such as studs and rebars. In this study, a flexural load test was performed on a mock-up specimen that was synthesized by fabricating an RC slab on top of a 100 MPa-class centrifugal shaped beam produced at the factory. proven reliability.

The Development of Automatic Grease Lubricator Driven by Gear Mechanism with Controlled Operating Time (주유시간 조절이 가능한 기어 메커니즘 구동방식의 자동그리스주유기 개발)

  • Wang, Duck-Hyun;Lee, Kyu-Young;Lee, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제23권2호
    • /
    • pp.199-206
    • /
    • 2006
  • Automatic grease lubricator is equipment that provides adequate amount of fresh grease constantly to the shaft and the bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This research is to develop automatic grease lubricator by gear driven mechanism with controlled operation time. The ultimate design of this equipment is to lubricate an adequate amount of grease by a simple switch clicking according to the advanced set cycle. The backlash of the gear was minimized to increase the output power. To increase the power of gear mechanism, the binding frequency and the thickness of the coil were changed. To control the rotating cycles of the main shaft according to its set numbers, different resistance and chips were used to design the circuit to controls electrical signals with pulse. The body of the lubricator was analyzed by stress analysis with different constructed angle. The stress analysis for differing loading pressures applied to the exterior body of grease lubricator due to the setup angle, was found that the maximum stress was distributed over the outlet part where the grease lubricator suddenly narrowed contracts. Digital mock-up was analyzed and the rapid prototyping(RP) trial products were tested with PCB circuit and grease. The evaluation of the outlet capacity for RP trial products was conducted, because the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, the finishing process was applied to decrease the roughness of the surface to a comparable level and was able to test the performance examination for the product.

Constructability Analysis in Aged-Housing Remodeling Demolition Work for Maximizing Waste Recycling (폐기물 재활용성 향상을 위한 리모델링 철거공사의 시공성 평가 및 사례적용)

  • Chae, Seong-Hyun;Kim, Ki-Hyun;Cha, Hee-Sung;Kim, Kyung-Rai;Han, Ju-Yeoun
    • Korean Journal of Construction Engineering and Management
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2010
  • From now on, the aged apartment or house is expected to increase rapidly. So, we have to build a process of remodeling and develop the new technique. Demolition work is needed for systematic plan and management. However, contractors of the remodeling project established a rough plan and did not consider recycling wastes, safety of workers and structural stability of building. Therefore, we need a step to develop a assessment system, verify and make specified. This paper evaluated how much improve on construction speed, work efficiency, intensity of work and influence with another process comparing the existing method with the new demolition method. The qualitative and quantitative assessment system are developed with these output. The case study was carried out experimental group and control group, based on developed assessment system, which have the same condition. The existing method was made up of 3 steps- 1)Demolish windows, doors and iron goods, 2)Demolish indoor and outdoor walls, 3)Drop the waste. The new demolition method was made up of 5 steps- 1)Demolish windows, doors and iron goods, 2)Demolish the ceiling and wall's finishing materials, 3)Demolish the floor's finishing materials, 4)Demolish indoor and outdoor walls, 5)Drop the waste. Work time, idle time, the character of a work unit are analyzed by mock-up test. This study's output is expected to establish a systematic process of new demolition method and based on the maximizing waste recycling work in our construction industry.

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete (프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가)

  • Yoon, Jin Young;Kim, Jae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2017
  • The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.