• Title/Summary/Keyword: wall design

Search Result 2,979, Processing Time 0.028 seconds

A Study on the Resonable Design of Eco-Metal Reinforced Retaining Wall (Eco-Metal 보강토 옹벽의 합리적 설계에 관한 연구)

  • Yoon, Jun-Yeong;Noh, Si-Won;Lee, Yeong-Seang;Lee, Soon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.772-781
    • /
    • 2010
  • In this study, a revegetation reinforced earth retaining wall to strengthen the strength than construction and make up for the weakness; eco-friendly part, of the existing facilities is new construction method. The special attention is that Eco-Metal reinforced retaining wall is not use concret. Before test construction on the scene, the stability of Eco-Metal reinforced retaining wall was checked by an experiment with a model and numerical analysis. The result of an experiment with a model was that the loaded tensile stress 40.2KN/m was more than long-term design tensile strength 29.4KN/m at Geogrid and a safety factor of numerical analysis was 1.14.

  • PDF

Selection of the Large Diameter Pipe Wall Thickness by Value Engineering for a Plant (플랜트에서 가치공학 개념을 적용한 대관경 배관두께 선정에 관한 연구)

  • Choi, Gayoung;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.65-73
    • /
    • 2011
  • This research has suggested a method to select pipe wall thickness by application of the value engineering to reduce the cost and quantity that are major part of construction materials. This research shows that the application of value engineering reduces the cost of piping materials by optimizing pipe wall thickness while maintaining process flow date of design pressure and design temperature. Based on this knowledge, the application of the value engineering will lead to the cost reduction and quantity reduction by effective selection of pipe wall thickness. The application of the value engineering will help the EPC companies to win a contract in the overseas plant market.

  • PDF

A Study on the Interior Design and Wall Performance Optimizing Method by Using GA and AHP (GA와 AHP를 이용한 실내 디자인과 벽체 성능 최적화 방법에 관한 연구)

  • 진경일;이경회
    • Korean Institute of Interior Design Journal
    • /
    • no.29
    • /
    • pp.86-93
    • /
    • 2001
  • This study presents about the method of alternatives selection by considering wall performance and interior design. Wall is selected fur the object and 3 items of cost, performance, and design as the objective function for optimizing are determined. Thus the wall performance selected problems, which are improvement of insulation performance, sweaty prevention, sound insulation performance and design selected problems, which is satisfactory Improvement of users about Interior design. It is important to select alternatives that can satisfy the performance and design on the capital given as much as possible. But quantitative problem such as performance or expanses and qualitative problem such as design are not in the same dimension. Therefore this problem is a multi-criteria optimization problem and also has used AHP method as the method to solve these. Moreover GA is used to solve a problem of the alternatives occurrence, which is the characteristic of multi-criteria problem. This study presents the solution method on multi-criteria problem that has been mix loaded of quantitative problem and qualitative problem by using AHP(Analytic Hierarchy Process) and GA(Genetic Algorithm).

  • PDF

Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

  • Shadravan, Shideh;Ramseyer, Chris C.;Floyd, Royce W.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.251-272
    • /
    • 2019
  • This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

The Improvement of Curtain Wall Design Process using Value Stream Mapping Tools (VSM기법을 활용한 커튼월 공사의 설계 프로세스 개선)

  • Kim, Chang-Duk;Lee, Sang-Hyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.5
    • /
    • pp.128-137
    • /
    • 2006
  • This paper is to develop curtain wall process life-cycle system in high-rise buildings in order to establish effective cooperation communication channels among the diverse constituents. This paper is to provide a base toward a curtain wall life-cycle management system to support decision making and the effective flow in light of information and materials. The four objectives of the research are 1) the analysis of the current curtain wall life-cycle process, 2) the analysis and development of the curtain wall design process As-Is model, and 3) the Muda analysis of the design process As-Is model and the suggestion of the improvements, 4) the development of curtain wall design To-Be model and comparative analysis of the improvement in terms of value streams. This research indicates the wastes decrease (or the values increase) from 6.7% up to 100% in different decision criteria through the improvement by the comparative analysis between the As-ls and To-Be curtain wall design process. This research suggests the potential improvement by VSM and a curtain wall life-cycle management system in curtain wall construction for diverse constituents be significant.

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Investigation on Response Modification Factor of RC Structural Walls in Apartment Buildings (아파트 건물의 구조 벽체에 대한 반응수정계수)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.544-552
    • /
    • 2001
  • Korea is classified into low and moderate seismic zone from the view-point of seismic hazard level. Korean seismic provisions has been developed based on UBC and ATC 3-06. Thus, in calculation of design base shear according to Korean provisions response modification factor (R) is included in the formula of design base shear. The major role of this factor is to reduce the elastic design base shear whereby structures can behave in inelastic range during design level earthquake ground motions(mean return period of 475 yrs.). R factor is assigned according to material and structural systems. In this study, R factor for bearing wall system is considered. Most of the walls of apartment buildings in Korea resist gravity and seismic loads simultaneously so that this wall system can be classified into bearing wall system. Structural details of these walls are different from those used in Japan and U.S.. They are all rectangular in sectional shape rather than barbell in shape, and also have special lateral reinforcement details at the boundaries of a wall. In Korean seismic design provisions(1988), two different values(3.0 and 3.5) of R factor are assigned to the bearing wall systems according to the wall details. However, in updated seismic provisions(2000), only one value is assigned to R factor(3.0) irrespective of wall details. In this study, the design base shear values in Korean seismic design provisions(1988, 2000), ATC 3-06, UBC are compared. Also experimental study was carried out to evaluate the seismic performance of structural walls. For this purpose, five test specimens were made which have special details used in apartment bearing wall systems in Korea. Based on the results of this study, response modification factor for bearing wall system is discussed.

Furniture & Lighting Exhibition Design (가구/조명 전시 디자인)

  • Yim, Oh-Yon
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.11a
    • /
    • pp.157-158
    • /
    • 2007
  • This is an interior design for a furniture & lighting design exhibition. The concept of design is to secure the smooth flow planning of an audience and effective direction of an exhibit Design content include 1) installation(passage of light) to guide an audience from entrance to right side of the exhibition space to prohibit the flow dispersion and keep smooth continual circulation flow plan 2)image-wall to introduce exhibition 3)installation to help the global understanding of exhibit 4)exhibition stand design considering proper height of audience's eye.

  • PDF