• Title/Summary/Keyword: wall design

Search Result 2,979, Processing Time 0.03 seconds

Dentin bond strength of bonding agents cured with Light Emitting Diode (LIGHT EMITTING DIODE로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구)

  • Kim Sun-Young;Lee In-Bog;Cho Byeong-Hoon;Son Ho-Hyun;Kim Mi-Ja;Seok Chang-In;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.504-514
    • /
    • 2004
  • This study compared the dentin shear bond strengths of currently used dentin bonding agents that were irradiated with an LED (Elipar FreeLight, 3M-ESPE) and a halogen light (VIP, BISCO). The optical characteristics of two light curing units were evaluated. Extracted human third molars were prepared to expose the occlusal dentin and the bonding procedures were performed under the irradiation with each light curing unit. The dentin bonding agents used in this study were Scotchbond Multipurpose (3M ESPE), Single Bond (3M ESPE), One-Step (Bisco), Clearfil SE bond (Kuraray), and Adper Prompt (3M ESPE), The shear test was performed by employing the design of a chisel-on-iris supported with a Teflon wall. The fractured dentin surface was observed with SEM to determine the failure mode. The spectral appearance of the LED light curing unit was different from that of the halogen light curing unit in terms of maximum peak and distribution. The LED LCU (maximum peak in 465 nm) shows a narrower spectral distribution than the halogen LCU (maximum peak in 487 nm). With the exception of the Clearfil SE bond (P < 0.05), each 4 dentin bonding agents showed no significant difference between the halogen light-cured group and the LED light-cured group in the mean shear bond strength (P > 0.05). The results can be explained by the strong correlation between the absorption spectrum of camphoroquinone and the narrow emission spectrum of LED.

Consequence Analysis of Hydrogen Filling Stations based on Cascade Compressing Systems (케스케이드 방식 압축시스템 기반의 수소충전소에 대한 정성적 위험성평가)

  • Ahn, Byeong-Jun;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2021
  • Because of the recent expansion of hydrogen vehicle supply, the installation of hydrogen filling station is expected to gradually expand. This study attempts to predict the damage scale and propose a safer design form based on the scenario that assumes the worst case of a hydrogen station. A Flacs solver using computational fluid dynamics (CFD) was used to predict the damage scale, and the accuracy was verified by comparing it with the experimental results of previous researchers. The damage scale prediction was conducted for hydrogen leakage and explosion, and the prediction target was the KR model based on the measured values. And as a comparative review model, a roofless model was selected without a ceiling. As a result of analyzing the two models, it was possible to confirm the accumulation and retention of hydrogen gas up to 60 vol% or more in the KR model, whereas in the case of the Roofless model, the phenomenon of discharge and diffusion to the outside of the charging station by riding the wall after leakage. I was able to check. In conclusion, it was reviewed that the type of hydrogen charging station without ceiling is more advantageous for safety than the hydrogen filling station model.

Analysis for Applicability of Differential Evolution Algorithm to Geotechnical Engineering Field (지반공학 분야에 대한 차분진화 알고리즘 적용성 분석)

  • An, Joon-Sang;Kang, Kyung-Nam;Kim, San-Ha;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • This study confirmed the applicability to the field of geotechnical engineering for relatively complicated space and many target design variables in back analysis. The Sharan's equation and the Blum's method were used for the tunnel field and the retaining wall as a model for the multi-variate problem of geotechnical engineering. Optimization methods are generally divided into a deterministic method and a stochastic method. In this study, Simulated Annealing Method (SA) was selected as a deterministic method and Differential Evolution Algorithm (DEA) and Particle Swarm Optimization Method (PSO) were selected as stochastic methods. The three selected optimization methods were compared by applying a multi-variate model. The problem of deterministic method has been confirmed in the multi-variate back analysis of geotechnical engineering, and the superiority of DEA can be confirmed. DEA showed an average error rate of 3.12% for Sharan's solution and 2.23% for Blum's problem. The iteration number of DEA was confirmed to be smaller than the other two optimization methods. SA was confirmed to be 117.39~167.13 times higher than DEA and PSO was confirmed to be 2.43~6.91 times higher than DEA. Applying a DEA to the multi-variate back analysis of geotechnical problems can be expected to improve computational speed and accuracy.

An Examination on the Appearance Process of Ammaksae(concave end roof tiles) of the Baekje Period (백제 암막새의 출현과정에 관한 검토)

  • Shim, Sang-Yuck
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.157-178
    • /
    • 2005
  • In this thesis, ammaksae, or internal roof tiles, which was reported to be in the period of Baekje, was examined on the basis of layers of archaeological excavation and styles of relics. As a result, among the relics which have already been reported, jidumun amkiwa (concave roof tiles patterned by finger tips) excavated from Pungnap Earthen Wall and yudansik amkiwa (stepped concave roof tiles) from remains such as Guari Baekje Remains, could not be seen yet. The only relics that could be identified as original-style ammaksae or ammaksae were jidumun amkiwa unearthed from the site of Gunsurisa Temple, togiguyeon amkiwa (mouth-rim earthenware concave roof tiles) and yuaksik amkiwa (concave roof tiles with sills) from Buso Fortress and Gwanbukri Baekje Remains, and gwimyeonindongdangchomun ammaksae (honeysuckle-pattern concave end roof tiles with monster design) from the sites of Jeseok Temple and Mireuk Temple. Regarding ammaksae in the period of Baekje like the above, it is considered that jidumun amkiwa (short sills appeared), which showed up in the period of China's North Dynasties, developed into togiguyeon amkiwa and yuaksik amkiwa (sills were formed), and then gwimyeonindongdangchomun ammaksae (patterns appeared) emerged.

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates (다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰)

  • Kim, Gyunam;Ku, Garam;Cheong, Cheolung;Kang, Woong;Kim, Kuksu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • In this study, a numerical methodology is proposed for evaluating valve flow noise in a pipe conveying high pressure gas, and the effects of perforated plates on reduction of such valve flow noise are quantitatively analyzed. First, high-accurate unsteady compressible Large Eddy Simulation techniques are utilized to predict flow and flow noise by a valve in a high-pressure pipe. The validity of the numerical result is confirmed by comparing the predicted wall pressure spectrum with the measured one. Next, the acoustic power of downstream-propagating acoustic waves due to the valve flow is analyzed using an acoustic power formula for acoustic waves propagating on mean flow in a pipe. Based on the analysis results, perforated plates are designed and installed downstream of the valve to suppress the valve flow noise and the acoustic power of downstream-going acoustic waves is predicted by using the same numerical procedure. The reduction by 9.5 dB is confirmed by comparing the predicted result with that of the existing system. Based on these results, the current numerical methodology is expected to be used to reduce valve flow noise in an existing system as well as in a design stage.

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

Analysis of Rebound Behavior of Blast-Resistant Door Subjected to Blast Pressure (폭압 작용에 의한 방폭문의 반발거동 해석)

  • Shin, Hyun-Seop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Steel-concrete single-leaf blast-resistant doors, having steel box and slab inside, are installed on the wall using supporting members such as hinges and latches. Several studies have been conducted on their deflection behavior in the same direction as that of the blast pressure, but studies on their deflection behavior in the opposite direction, that is, studies on negative deflection behavior are relatively insufficient. In this study, we conducted a parameter analysis using finite element analysis on blast-resistant doors, on their rebound behavior in the negative deflection phase. Results revealed that the plastic deformation of the door, and the change in momentum and kinetic energy during rebound, were major factors influencing the rebound behavior. Greater rebound force was developed on the supporting members in the impulsive region, than in the quasi-static region; due to the characteristics in the impulsive region, where the kinetic energy developed relatively greater than the strain energy. In the design process, it is necessary to consider excessive deformation that could occur in the supporting members as the rebound behavior progresses. Additionally, it was found that in the case of steel-concrete blast doors, the rebound force increased relatively more, when the effects of both rebound and negative blast pressure contributed to the negative deflection of the door. Since conditions for the occurrence of this superposition effect could vary depending on structural characteristics and explosion conditions, further investigation may be required on this topic.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.