• Title/Summary/Keyword: wall design

Search Result 2,996, Processing Time 0.025 seconds

지하외벽슬래브의 부재력 분포에 대한 수치적 연구

  • 김영찬;김동건
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.271-276
    • /
    • 2002
  • A numerical study using linear finite element analysis is performed to investigate the behavior of basement wall subject to soil and water pressure in this study, parametric studies are peformed to investigate the variation of moment and shear force according to column-to-wall stiffness ratios and aspect ratios. Scaled factors applicable to the design of basement wall are proposed with the illustration of design examples.

  • PDF

A Simplified Seismic Design Method of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 내진 설계에 관한 연구)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.65-74
    • /
    • 1998
  • In seismic design procedure of precast concrete structure, it is important to assign ductility requirement on the connection element for a favorable failure mechanism. The purpose of this paper is to propose a simplified procedure to determine the required ductility of coupling beam in coupled precast shear wall for a lateral displacement ductility at the top of a structure. This study shows that an equation for ductility of cloupling beam is introduced on the basis of several basic assumption.

  • PDF

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

Reinforcing Effect of Thin-wall at Serviceability Condition (상시하중상태에서 박벽의 보강효과에 대한 연구)

  • Kim, Doo-Hwan;Yoon, Seong-Soo;Park, Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • For the reasonable analysis of design problems for agricultural facilities, considered the reinforcing effect of thin-wall. The most of agricultural structure is constructed small scale and have many purposes. Thus it has been designed temporary rather than permanent structure, and has relatively large slenderness ratio, small section and semi-rigid condition. Therefore many agricultural facilities are consist of relatively strong frame with weak wall at the viewpoint of stiffness and have not been reflected in the design. But the tension field influences to collapse of structure have already known. Therefore, we need quantification the effect of tension field at structural analysis. In this study, present the method of quantification the effect of tension field that came out thin-plate surrounded by high stiffness frame. The numerical results show that the effect of tension field effect for thin-wall is about 5% of the sectional area of frame in study agricultural facilities.

Experimental Study on Minimizing Wall Thickness Thinning for Deep Drawing of Circular Shells (원통형 딥드로잉 용기의 벽 두께 감소 최소화에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.393-399
    • /
    • 1998
  • For minimizing wall thickness thinning of circular shells, a new stamping technology, the deep draw-ing process combined with ironing is approached and investigated. The design requirements for the deep drawing shells are to keep the optimum wall thickness with max. 10 percent thickness thinning of the initial blank thickness, to make uniform thickness strain distribution for the wall of circular shell and to improve the shape accuracy for the roundness and concentricity. In order to check the validity and effectiveness of proposed work, a sample process design is applied to a circular shell needed for a 4multi-stepped deep drawing. Through experiments, the variations of the thickness strain distribution in each drawing process are observed. Also a series of experiments are performed to investigate optimum process variables such as the geometry of tooling, radius and drawing rate. In particular, the advantage of current approach with ironing is shown in contrast to the conventional deep drawing process. From the results of proposed method, the optimum value of process variables are obtained, which contribute more uniform thickness strain distribution and better quality in the drawn product.

  • PDF

Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques (역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

A Study on the Wall as Objects in Contemporary Interior Architecture (현대 실내건축의 벽의 오브제(object)적 특성에 관한 연구)

  • 최선영;김도훈;이정욱
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2001.05a
    • /
    • pp.45-50
    • /
    • 2001
  • The modern architecture has to find more essential configuration order rather than the spatial order in the reasonable feint. In other side, paintings and sculptures as a part of the building in the past become a pure art and develop an abstract art. Also they make many affects on the modern architecture as a paradigm. New material has brought to the new forms and the changes of the overall culture and art. One of the new changes has made the object that is one of unique culture symptoms in the 20C and the general part of the modem art includes it. The wall that limits the inside area through mass and volume before the recent times had treated as the object to express the special mean and character. However, the wall has developed as a component that consists of the internal space through surface and volume rather than mass or structure since the recent times. Now, I survey the objective tendency of the wall in the modem interior architecture mainly focused on the relation between object in the abstract art and wall inside.

  • PDF

Structural Behavior of Wall-Type Structure with the Application of Slip-Form System (슬립폼 공법으로 건설된 벽식 구조의 거동에 관한 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.157-168
    • /
    • 1995
  • The structural performance of Slip-Form system was examined to make use of many advantages of fast construction and high quality c0ncret.e. However, the separate cor~struction of wall and slabs may cause some weaknesses around the wall-slab connection region. Thus, the purpose of the study is to examine the structural performance of wall-type structure constructed by Slip-Form method and to develop an efficient connection system between wall and slabs. In order to investigate the system, 7 wall specimens and 8 wall-slab joint specimens were tested and the experimental results were compared with the design equations and theoretical analysis. A satisfactory performance was obtained from the wall specimen tests. However, wall-slab joint specimens with rebar connection materials I Ilalfen] were shown that. the strength of' wall should be checked during design porocess.

The estimation of the wall friction coefficient in tunnels by in-situ measurement (현장측정을 통한 터널 내 벽면마찰계수 추정 연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Lee, Ho-Hyung;Baek, Doo-San;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.405-421
    • /
    • 2018
  • In most of cases, the wall friction coefficients applied for local tunnel design are quoted directly from foreign data or local design guideline. In the previous studies, the wall friction coefficient was estimated using the velocity decay method. However, it is difficult to estimate the wall friction coefficient when the convergence wind velocity in the tunnel is negative (-) or if there is a change in the natural wind. Therefore, in this study, the wall friction coefficient is estimated by applying the dynamic simulation technique in addition to the conventional the velocity decay method. As a result of the analysis, the coefficient of wall friction in the tunnels for the total of 9 tunnels (18 tubes both directions) was 0.011~0.025, and the mean value was estimated to be 0.020. In addition, the wall friction coefficient obtained quantitatively through this study was compared with the current design criteria.

Behavior of underground strutted retaining structure under seismic condition

  • Chowdhury, Subha Sankar;Deb, Kousik;Sengupta, Aniruddha
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1147-1170
    • /
    • 2015
  • In this paper, the behavior of underground strutted retaining structure under seismic condition in non-liquefiable dry cohesionless soil is analyzed numerically. The numerical model is validated against the published results obtained from a study on embedded cantilever retaining wall under seismic condition. The validated model is used to investigate the difference between the static and seismic response of the structure in terms of four design parameters, e.g., support member or strut force, wall moment, lateral wall deflection and ground surface displacement. It is found that among the different design parameters, the one which is mostly affected by the earthquake force is wall deflection and the least affected is the strut force. To get the best possible results under seismic condition, the embedment depth of the wall and thickness of the wall can be chosen as around 100% and 6% of the depth of final excavation level, respectively. The stiffness of the strut may also be chosen as $5{\times}105kN/m/m$ to achieve best possible performance under seismic condition.