• Title/Summary/Keyword: wall boundary

Search Result 1,048, Processing Time 0.025 seconds

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Dielectric and Field-induced Strain Behaviors due to Excess PbO in Lead Yttrium Zirconate Stannate Titanate Ceramics (과잉 PbO에 의한 (Pb,Y) $(Zr,Sn,Ti)O_3$세라믹스의 유전 및 전기장유기변형 특성)

  • Yun, Gi-Hyeon;Kim, Jeong-Hui;Gang, Dong-Heon
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2000
  • The $Pb_{0.94}Y_{0.04}[(Zr_{0.6}Sn_{0.4})_{0.915}Ti_{0.085}]O_3$ ceramics which corresponded to the antiferroelectric-ferroelectric phase boundary composition were prepared for digital-type-piezoelectric/electrostrictive device application. Their dielectric, field-induced polarization (P) and strain (X) behaviors were studied with variations in sintering condition and excess PbO content. The orthorhombic structure of specimens was hardly affected either by excess PbO addition or sintering temperature. With increasing excess PbO content, grains tended to be smaller and rounded ones, and the optimum sintering temperature was lowered. Excess PbO addition stabilized the antiferroelectric phase of the specimen effectively, which was confirmed by P-E and X-E analyses. Also the digital-type-strain character was found to be enhanced despite of slight increase in phase transition (AFE-FE) field and electrical resistivity, and decrease in maximum strain. These results were explained in terms of possible lattice defects and domain wall motion.

  • PDF

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Origin and Preservation Status of the 'Gongju Junghakdong Old Missionary House', the Registered Cultural Property No. 233 (등록문화재 제233호 '공주 중학동 구 선교사가옥'의 유래와 보존현황)

  • Suh, Mancheol;Kim, Sung Bae
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.11-21
    • /
    • 2018
  • The result of the study on the origin and preservation status of the 'Gongju Junghakdong old missionary house', the Registered Cultural Property No. 233, reveals that the building was approved on October 23, 1921, and missionary Alice H. Sharp was living in the building until her retirement from her missionary life of 39 years in Korea in 1939. In order to review internal and external preservation status of the building, condition of wood material, the composition of the window, the damage of the wall, and the leaning of the building were examined. In particular, in the case of window facilities, it is necessary to restore it to the original upper and lower sliding window. As a result of investigation of the preservation status of the external facilities, it is necessary to restore the original shape of the staircase and a deck of the building on south western side and the well. In addition, the results of the non-destructive diagnosis of the ground revealed that the building was built on uneven surface layer of 2-5 m thickness and the boundary between the surface layer and the upper part of the weathered rock is inclined following geomorphology. This phenomenon shows that when the water content of the ground increases in the rainy season, the bearing capacity of the ground is lowered, and there is a possibility of uneven subsidence. Especially, landslides may occur in case of heavy rain. Therefore, it is desirable to install a masonry facility at the southwest boundary of the site, and it is recommended to install a drainage facility to ensure rapid drainage.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

A Comparative Considerations of the Moat at the East and West (동.서양 해자(垓字)의 비교 고찰)

  • Jung, Yong-Jo;Park, Joo-Sung;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.29-38
    • /
    • 2010
  • A moat is a pond or waterway paved on the outside of a fortress that is one of the facilities to prevent enemy from approaching the fortress wall or classify it as the boundary space, and this study was undertaken to find out the characteristics of the moat that was existed in the East and the West from ancient time to medieval time with the following result. First, the moat in the East was installed of natural moat and artificial moat at the same time while the moat in the West had the fortress built in naturally advantageous site to use natural most substantially more. Second, the moats of Korea were smaller in scale compared to other countries (Japan, China and the Western countries). Third, the fortresses in the East were built to protect towns or royal palace while the West had the fortress to protect the residence of kings, lords, great wealthy persons and the like, and they were used jointly with the natural moat and artificial moat to defend against the infiltration of enemy. Fourth, the Pungsujiri in the Orient is one of the numerous ideologies forming the supplementary ideologic system of Korean people that could not be denied as the perception that influences on Korean people after the Silla Dynasty, and this Pungsujiri was considered when determining the location of the castle. The moat surrounding the castle had the role to keep the good energy in the castle from escaping away. Fifth, the Ha-Ha technique in the west was designed to prevent the external power from infiltration by digging the ditch on the place applicable to the boundary of the garden site, rather than the fence. While walking around along the water-side path without knowing the existence of this ditch, when the road is discovered with the cut off in the ditch, people had the exclamation without actually recognizing such astonishment. It was originally the dike for military purpose during the medieval time that was designed to look into the garden without physical boundary surrounded with the vertical fence in the garden that by having the deep ditch like shape on the boundary line of the garden which was designed to form the farm by preventing various types of cattle from coming inside the garden and bring in the garden element for farms, forestry, agricultural land and the like.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.