• Title/Summary/Keyword: wall boundary

Search Result 1,048, Processing Time 0.024 seconds

Numerical and Experimental Study on the Aerodynamic Characteristics of FAST Fuselages (FAST 동체의 공력특성에 대한 수치 및 실험 연구)

  • Han, Cheol-Heui;Cho, Jeung-Bo;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • The effects of three fuselage head shapes and nonplanar ground surface on the aerodynamic characteristics of FAST fuselages are investigated using a boundary element method. Wind tunnel test is also performed to validate the present method and to identify the wall effect on the frictional drag which cannot be analyzed using the present method. It is found that the channel has an effect of increasing the lift of those investigated fuselages. The optimal head shape depends on the design conditions of the FAST and its guideway channel. Comparing the calculated induced drag with the measured total drag, it can be concluded that the profile drag is independent of the ground height. Thus, the present numerical method can be applied to the conceptual design of the high-speed ground transporters if only the profile drag of the vehicle in free flight is assumed to be known.

Comparative Analysis on Interior Spaces of the Selected Historical Residences in the Western and Eastern Countries - focusing on case residences of Korea, China, Japan, Rome, Egypt, and Italy - (동서양 전통적인 주택 양식의 실내공간 특성 비교분석 연구 - 한국, 중국, 일본, 로마, 이집트, 이태리의 사례주택을 중심으로-)

  • 김연정;이연숙
    • Korean Institute of Interior Design Journal
    • /
    • no.27
    • /
    • pp.152-161
    • /
    • 2001
  • At the multi-cultural society, research is needed to encourage a social atmosphere for enhanced understanding and respect for different cultures & countries. The purpose was to analyze the characteristics of spatial arrangement, space connection, Interior decoration and the relationship among these three features, which showed each country's unique housing form tradition. Three representative cases of historic residences from each country were selected on the basis of a recognized historic architecture directory. Total 18 residences from 6 countries - Korea, China, Japan, Rome, Egypt, and Italy - were comparatively analyzed. As results, aspects generally found in Eastern countries, were the fence as the semi-open boundary between the inside and the outside of the house, the flexibility of spatial opening and partitions between rooms, and finally simple and movable decoration features. On the other hands, aspects appeared in Western countries, were the outer wall of the building as the boundary to the outside, the closed and fixed properties of the room partitions, and finally complex and fixed decoration features. The research also showed that even within the same culture, the degree of openness varied. Each feature of space was related and could be explained within the same context. Housing, regardless of country and culture, tried to accommodate the exterior space inside the building as much as possible. The common pursuit was transformed to various visible forms and its reason might be due to different socio-cultural and environmental backgrounds that need to be continuously explored in academic area.

  • PDF

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder (와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석)

  • Kwang-Soo Kim;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • This paper presents a vorticity-based numerical method for analyzing an incompressible Newtonian viscous flow around an impulsively started cylinder. The Navier-Stockes equations have a natural Helmholtz decomposition. The vorticity transport equation and the pressure equation are derived from this decoupled form. The associated boundary conditions are dynamic for the vorticity and pressure variables representing the coupling relation between them and the force balance on the wall. The various numerical treatments for solving the governing equations are introduced. According to Wu et al.(1994), the boundary conditions are decoupled, keeping the dynamic relation between vorticity and pressure. The vorticity transport equation is formulated by FVM and TVD(Total Variation Diminishing) scheme is used for the convection term. An integral approach similar to the panel method is used to obtain the velocity field for a given vorticity field and the pressure field, instead of the conventional differential approaches. In the numerical process, the structured grid is generated. The results are compared to existing numerical and analytic results for the validity of the present method.

  • PDF

Estimating Length of Jeju Batdam Using Cadastral Information (지적 정보를 이용한 제주 밭담 길이 추정)

  • Park, Jong-Jun;Kwon, Yoon-Ku
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.37-44
    • /
    • 2019
  • The value of Jeju Batdam has been reexamined as it is listed as a nationally important agricultural heritage and globally important agricultural heritage systems. However, it is already exposed to threats such as reduction of agricultural population and cultivation area. Despite efforts like the agricultural heritage system to preserve traditional agriculture, there is few basic investigation into the current status of Jeju Batdam. The purpose of this study is to estimate the length of Jeju Batdam. We used the continuous cadastral map of Jeju area to extract the boundaries of the field lot. In the cadastral map, the farmland was selected by selecting dry fields, paddy fields and orchards. 300 sample site were selected from the extracted farmland, and the boundaries between the Internet map and the parcels were superimposed and the differences were confirmed on the drawing. After that, field survey was conducted to confirm the boundary of the parcels and the existence of actual Batdam. It is estimated that the length estimated from this study is at least 23,983km and maximum 142,353km, which is at least 1,830km longer than 22,108km announced in 2007. Since Jeju Batdam is based on land parcel boundary, it is an objective and efficient method to utilize intellectual information. In addition, because it is subordinate to farmland, new information can be extracted reflecting the change of land use and make the spatial database based on the cadastral maps.

Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations (강제동요를 이용한 원형실린더 점성 롤댐핑 연구)

  • Yang, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The roll damping problem in the design of ships and offshore structures remains a challenge to many researchers due to the fluid viscosity and nonlinearity of the phenomenon itself. In this paper, the study on viscous roll damping of a circular cylinder was carried out using forced oscillations. The roll moment generated by forced oscillation using a torque sensor was measured for each forced oscillation period and compared with the empirical formula. Although the magnitude of the measured torque from the shear force was relatively small, the results were qualitatively similar to those obtained from the empirical formula, and showed good agreement with the quantitative results in some oscillation periods. In addition, the flow around the circular cylinder wall was observed closely through the PIV measurements. Owing to the fluid viscosity, a boundary layer was formed near the wall of the circular cylinder, and a minute wave was generated by periodical forced oscillations at the free surface through the PIV measurement. In this study, the suitability of the empirical formula for the roll moment caused by viscous roll damping was verified by model tests. The wave making phenomenon due to the fluid viscosity around the wall of a circular cylinder was testified by PIV measurements.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.

Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion (루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1813-1818
    • /
    • 2014
  • This paper presents the stability analysis of the haptic system including a human impedance using the Routh-Hurwitz criterion. The reflective force is computed from a virtual spring model and is transferred to a human operator using the first-order-hold method. The stability boundary conditions are induced and the relation among a virtual spring ($K_w$), the mass ($M_h$), the damping ($B_h$) and the stiffness ($K_h$) of a human impedance is analyzed. Hence the stability boundary of the virtual spring ($K_w$) is proposed as $K_w{\leq}54413{\sqrt{(M_h+M_d)(B_h+B_d)}}-0.486K_h$ when the sampling time is 1 ms. The average relative error is about 0.5% when the mathematical analysis results are compared with the results of the stability boundary model.