• Title/Summary/Keyword: wall boundary

Search Result 1,048, Processing Time 0.031 seconds

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

An Experimental Study on the Effect of Fluid Flow and Heat Transfer Characteristics by the Longitudinal Vortices (종방향 와동이 유체유동 및 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • 양장식;김은필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.843-852
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.

  • PDF

Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors (소형 Thermal Conductivity Detector의 입구열전달 거동에 대한 수치해석)

  • Kim, U-Seung;Kim, Yeong-Min;Chen, Kuan;Cheon, Won-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.439-447
    • /
    • 2002
  • The microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. The solutions based on the boundary layer approximation are not very accurate in the region of the duct inlet for low Reynolds numbers. In this study, two-dimensional Navier-Stokes equations are considered to analyze the gas flow in a miniature TCD. Effects of channel size, inlet and boundary conditions on the heat transfer rate are examined. When the gas stream is not preheated, the distances for a miniature TCD to reach the conduction-dominant region for duct flow are found to be approximately two and three times the thermal entry length for duct flow with constant properties, respectively, leer constant wall temperature and constant wall heat flux boundary conditions. If the gas temperature at the channel inlet is close to the mean gas temperature in the conduction-dominant region, the entrance region is much shorter compared to other cases considered in this study.

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

The Near-Wall Flow Analysis Using Wall Function in LES Code(FDS5) (Wall function을 이용한 LES code(FDS5)의 벽 근처 유동해석)

  • Jang, Yong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1594-1600
    • /
    • 2011
  • Recently developed FDS5 CFD code has employed a near-wall flow treatment method which is Werner-Wengle wall law provided by NIST(National Institute of Standards and Technology). In this study, the wall law has been verified against DNS(Direct Numerical Simulation) data in the parallel plate. The $y^+$ was kept above 11 to fulfill the near-wall flow requirement in the grid generation. The total grid was $32{\times}32{\times}32$. The boundary condition for inlet and outlet was periodic condition and for both side, symmetric condition was used. The fully developed turbulent flow was generated and Re = 10,700. The simulated results were compared with DNS data. RANS results were also used for verification.

  • PDF

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Effects of Prandtl Numbers on Heat Transfer of Backward-Facing Step Laminar Flow with a Pulsating Inlet (입구유동 가진이 있는 층류 후향계단 유동에서 열전달에 대한 프란틀수 효과해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.923-930
    • /
    • 2012
  • The wall heat transfer of backward-facing step laminar flows with different Prandtl numbers and a pulsating inlet is investigated by unsteady simulations. The inlet is perturbed by the variation of frequency and amplitude. Temperature-dependent transport properties are adopted. Various characteristics of the wall heat transfer are explained by the variation of the thermal boundary layer. For Pr < 1, the wall heat transfer of temperature-dependent properties is decreased compared to that of constant properties, whereas it increases for Pr < 1. In addition, the wall heat transfer increases depending on the pulsating amplitude. However, the results of frequency variation for St < 0.2 show that the heat transfer is strongly enhanced at a specific frequency. In particular, the increase in the wall heat transfer is strongly related to the root mean square of the fluctuations of the reattachment length.

A Study on the Exteriority of Interior in the Louis I. Kahn's Architecture - Focused on the Study of Character of Connecting Elements - (루이스 칸 건축의 외부화된 내부에 관한 연구 - 연결공간의 체험과 표현을 중심으로 -)

  • Woo, Young-Sun;Shin, Buhm-Shik
    • Journal of architectural history
    • /
    • v.14 no.4 s.44
    • /
    • pp.117-135
    • /
    • 2005
  • This paper is a study of the possibility of experience and expression in the architecture of Louis I. Kahn by focusing on the characters of entrance, court and window/wall of his public buildings. In the course of composition, Kahn defined the entrance, court and window/wall as an connecting elements and elements of boundary. The characters revealed by these elements or rooms give the clue to insight Kahn's thought of relation of interior and exterior space or inner and outer space. Following are the characters of these elements. First, a entrance reveals the fact that inner space separates from outer space by connecting these two space and giving the value to inner space as the entity and totality like outer space. The entrance gives its ontological being to human subjects not by vision but experience and expression which is the essence of commonness, that is, Silence. Kahn made the possibility of activity amplify in this common and silent space. Second, this entrance is connected with wide and huge central space not individual spaces of interior space. This extreme procedure of entering makes human subject feel sublime of intoner space. And the central spaces becomes another exterior or another world in the inner world of architecture by the lights from above and by having the boundary wall which shows same pattern of exterior wall. Third, Kahn regarded a window as the giver of lights not as the medium of vision connecting inner space with outer. He tried to connect interior with exterior through the being and character of the light expressed in the interior. And in his buildings, interior space is connected with exterior by expressing the purpose of building, composition of inner space, structural truth and construction facts through the Form, a pattern of wall, details and ornamental joints. By practicing this thoughts in the real buildings, Kahn tried to gave aura to both the interior space and entity of architecture which is regarded as micro universe like flowers, rocks and human beings.

  • PDF