• Title/Summary/Keyword: walking rehabilitation

Search Result 655, Processing Time 0.022 seconds

Analysis on Health Factors Affecting Physical Activity Level among First-year Students in a University (대학 신입생의 신체활동수준에 영향을 미치는 건강 특성 분석)

  • Kim, Young-Bok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.19 no.3
    • /
    • pp.109-121
    • /
    • 2018
  • Background & objectives: Life style modification reduces the health risks of young people and improves their health status. Physical activity is known the effective factor to reduce health risks and health problems. This study performed to analyze health promotion behaviors related to physical activity among first-year students of university. Methods: To examine the association with physical activity and health promotion practices, health survey was conducted with 3,806 students who were first-year students in a university by self-reported questionnaire from February 26 to March 10, 2015. Multiple logistic regression analysis was performed to identify the difference of health promotion behaviors by physical activities. Results: 51.4% of the first-year student was regular exercisers who had practiced on regular walking exercise or regular strength exercise or regular aerobic exercise for a week. 87.8% of students exercised one or more times within the last one week. On the other hand, 12.2% of them did not exercise. In multiple logistic regression models, it remained significantly the difference of regular exercise by gender, subjective health status, sleeping time per one day, BMI, drinking behavior, and eating habit (p<0.05, p<0.01, p<0.001). Also it remained significantly the difference by physical activity type, such as walking, strengthen, and aerobic exercise (p<0.05, p<0.01, p<0.001). Conclusion: To help the achievement of academic goal, it should build physical activity policies and comprehensive health promotion programs to reduce health risk factors of university students. Comprehensive university health services and customized program for university students could help to make the best of their health. In future, to enhance physical activity practice, it needs to develop various tailed messages and smart healthcare service using health information technology (IT) on campus.

Effects of Robot-assisted Gait With Body Weight Support on Torque, Work, and Power of Quadriceps and Hamstring Muscles in Healthy Subjects

  • Hwang, Jihun;You, Sung (Joshua) Hyun;Choi, Woochol Joseph;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • Background: Robot-assisted gait training (RAGT) is an effective method for walking rehabilitation. Additionally, the body weight support (BWS) system reduces muscle fatigue while walking. However, no previous studies have investigated the effects of RAGT with BWS on isokinetic strength of quadriceps and hamstring muscles. Objects: The purpose of this study was to investigate the effects of torque, work, and power on the quadriceps and hamstring muscles during RAGT, using the BWS of three conditions in healthy subjects. The three different BWS conditions were BWS 50%, BWS 20%, and full weight bearing (FWB). Methods: Eleven healthy subjects (7 males and 4 females) participated in this study. The Walkbot_S was used to cause fatigue of the quadriceps and hamstring muscles and the Biodex Systems 4 Pro was used to measure the isokinetic torque, work, and power of them. After RAGT trials of each of the three conditions, the subjects performed isokinetic concentric knee flexion and extension, five at an angular velocity of 60°/s and fifteen at an angular velocity of 180°/s. One-way repeated analysis of variance was used to determine significant differences in all the variables. The least significant difference test was used for post-hoc analysis. Results: On both sides, there were significant differences in peak torque (PT) of knee extension and flexion between the three BWS conditions at an angular velocity of 60°/s and 180°/s conditions. A post-hoc comparison revealed that the PT in the BWS 50% was significantly greater than in the BWS 20% and the FWB and the PT in the BWS 20% was significantly greater than in the FWB. Conclusion: The results of this study suggest that the lower BWS during RAGT seems to lower the isokinetic torque, work, and power of the quadriceps and hamstring muscles because of the muscle fatigue increase.

The effects of virtual reality training on gait, balance, and upper extremity function in patients with stroke: A meta-analysis

  • Lee, Hyun soo;Kim, You Lim;Lee, Hae ji;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.3
    • /
    • pp.11-29
    • /
    • 2021
  • Background: The purpose of this study is to investigate the effects of virtual reality on gait, balance, and upper extremity functions compared to other independent variables or no variables. Additionally, the possibility of virtual reality for stroke patients was discussed. Design: Meta-analysis. Methods: The search for this study was a search term that combined stroke, virtual reality, and training, and the electronic search was conducted through EMBASE, MEDLINE, and Cochrane Library. As a result of the search, 21 studies satisfying the selection criteria of the target study were confirmed as the final analysis target. This study consisted of 21 randomized experimental studies and 21 randomized controlled trials, and the total number of participants was 642. [Experimental group (n=314), control group (n=328); total 642]. As a result of the study, upper extremity function was assessed using a box and block test, a modified Ashworth scale, and a scale including range of motion. The balance was evaluated by the berg balance scale. Gait was a Timed Up and Go test (TUG), stride length, and gait function. Scales including a walking rate scale were evaluated. The effect size for the intervention of the analytical study was meta-analyzed with the RevMan 5.3.3 program of the Cochrane library. Results: The results of the study showed that the function of walking was statistically significant. Balance showed statistically significant results. The upper extremity function showed no statistically significant results. Conclusion: Through this rehabilitation treatment by applying virtual reality environment to the rehabilitation of stroke patients in the future can be proposed as an effective intervention method for the balance and gait function of stroke patients.

The Effects of Complex Balance Exercise combined with Self-observation Training on Balance and Gait in Stroke Patients (자기관찰훈련을 병행한 복합적 균형운동이 뇌졸중 환자의 균형과 보행에 미치는 영향 )

  • Jeong-Il Kang;Dae-Keun Jeong;Seung-Yun Baek
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.39-45
    • /
    • 2023
  • PURPOSE: This study aimed to provide the basic data necessary for rehabilitation by identifying the effects of complex balance exercises combined with self-observation training on balance and gait improvement in stroke patients. METHODS: This study assigned 20 people randomly into two groups: the control and experimental groups. The experimental group (10 subjects) underwent self-observation training-combined complex balance exercise. The control group (10 subjects) underwent complex balance exercises. A pretest of the balance ability and walking ability of both groups was performed. The interventions were conducted for 30 minutes three times a week for four weeks, and post-tests were conducted four weeks after all interventions were completed. RESULTS: There was a significant difference between the experimental and control groups according to the increase in Berg Balance Sale within the group and a statistically significant difference by a decrease in 10MWT (p < .01). On the other hand, there was a significant difference only in the change in Berg Balance Sale between the two groups (p < .05). CONCLUSION: Combined balance exercise combined with self-observation training and combined balance exercise alone positively affected the Berg Balance Sale and 10MWT in both groups. On the other hand, in the results between groups, there was a statistically significant difference in Berg Balance Sale in complex balance exercise combined with self-observation training. Therefore, self-observation training should be used for the rapid social rehabilitation of stroke patients.

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.

Evaluation of Insole-equipped Ankle Foot Or thosis for Effect on Gait based on Biomechanical Analysis (인솔 장착형 단하지 보조기의 생체 역학적 분석을 통한 보행 영향성 평가)

  • Jung, Ji-Yong;Kim, Jin-Ho;Kim, Kyung;Trieu, Pham Hai;Won, Yong-Gwan;Kwon, Dae-Kyu;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of insole-equipped ankle-foot-orthoses (AFO) on gait. 10 healthy males who had no history of injury in the lower extremity participated in this study as the subjects. The foot of each subject was first scanned, and the insole fit to the plantar was made using BDI-PCO(Pedcad Gmbh, Germany). The subject then was made to walk on a treadmill under four experimental conditions: 1) normal walking, 2) walking wearing AFO, 3) walking wearing AFO equipped with the insole, 4) walking wearing pneumatic-ankle-foot-orthosis (pAFO) equipped with the insole. During walking, foot pressure data such as maximum force, contacting area, peak pressure, and mean pressure was collected using Pedar-X system (Novel Gmbh, Germany) and EMG activity of lower limb muscles such as gastrocnemius medial head, gastrocnemius lateral head, and soleus was recorded using MP150 EMG module (BIOPAC System Inc., USA). Collected data was then analyzed using paired t-test in order to investigate the effects of the insole. As a result of the analysis, when insole was equipped, overall contacting area was increased while both the highest peak pressure and the mean pressure were significantly decreased, and EMG activity of the lower limb muscles was decreased. On the contrary, the cases of wearing AFO showed the decreased contacting area and the increased pressures. Therefore, the AFO equipped with a proper insole fit well to the foot can help comfortable walking by spreading the pressure over the entire plantar.

A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking (보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교)

  • Oh, Seong-geun;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2018
  • The utilized coefficient of friction (UCOF) as a ratio of the shear force to the normal force on the ground during walking is used to identify the point at which slip is likely to occur. Shoe walking will change the utilized coefficient of friction by shoe design such as sole thickness and hardness, heel shape, and outsole pattern. In this study, subjects are 21 adults (10 female, 11 male, age: $25.2{\pm}2.3yrs$, height: $165.6{\pm}7.2cm$), analysis variables were walking speed, GRF, when the UCOF is maximal, and Tangent of CoP-CoM angle, and correlation analysis with the utilized friction coefficient (UCOF). As a result, First, for the shod walking the time point which UCOF is maximum about heel strike was faster and the magnitude was larger than for barefoot walking. Second, the correlation between the tangent of CoP-CoM and UCOF of right foot was higher at the left heel striking point (UCOF2_h) which occurred in the post propulsion phase than at the right heel striking point (UCOF1_h). This suggests that the right foot UCOF is related to the braking phase of left foot( which is the propulsion phase of right foot) rather than the braking phase of right foot.

The Effects of Self-Efficacy Promoting Pulmonary Rehabilitation Program in Out-Patients with Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환 외래환자에서 자기효능감증진 호흡재활프로그램의 효과)

  • Jung, Jang Hee;Kim, Jung Youp
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.6
    • /
    • pp.533-546
    • /
    • 2006
  • Background: The aim of this study was to determine the effectiveness of self-efficacy promoting pulmonary rehabilitation in patients with chronic obstructive pulmonary disease (COPD). Methods: thirty six patients, with clinically stable COPD were randomly assigned: 18 to a rehabilitation group and another 18 as a control group, The subjects participated in a the self-efficacy promoting pulmonary rehabilitation program for 8 weeks. This program consisted of education, breathing retraining, exercise training, relaxation and counseling. The control group received education only. The outcome variables were self-efficacy, dyspnea, exercise endurance, pulmonary function, and quality of life. Dyspnea was measured using the modified Borg scale. Exercise endurance was measured by the six minute walking distance. The quality of life was measured by the quality of life index for pulmonary disease patients. Results: In the rehabilitation group after performing the self-efficacy promoting pulmonary rehabilitation program, the self-efficacy score, exercise endurance, and quality of life score were higher than the control group (p=0.007, p=0.038, and p=0.039, respectively). and the exertional dyspnea score was significantly lower than controls(p=0.045). However, the dyspnea score and FEV1 were similar after performing the self-efficacy promoting pulmonary rehabilitation program. Conclusion: The self-efficacy promoting pulmonary rehabilitation program is effective to in improve self-efficacy, exertional dyspnea, exercise endurance and quality of life in patients with COPD.

A Study of EMG-Controlled FES System Implementation for primitive-walking of Paraplegics (하반신 마비 환자의 보행을 위한 근전도 제어 FES 시스템 구현에 관한 연구)

  • Kim, K.S.;Kim, K.H.;Kim, J.W.;Hong, W.H.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.34-38
    • /
    • 1991
  • This paper describes and discusses the employment of EMG pattern analysis to provide upper-motor-neuron paraplegics with patient-responsive control of FES (functional electrical stimulation) for the purpose of walker-supported walking. The use of above - lesion EMG signals as a solution to the control problem is considered. The AR (autoregressive) parameters are identified by Kalman filter algorithm using DSP chip and classified by fuzzy theory. The control and stimuli part of the below-lesion are based on microprocessor(8031). The designed stimulator is a 4-channel version. The experiments described above have only attempted to discriminate between standing function and sit-down function. A further advantage of the this system is applied for motor rehabilitation of social readaption of paralyzed humans.

  • PDF

Comparison of Energy Consumption of Reciprocating Gait Orthosis(RGO) and Powered Gait Orthosis(PGO) during Gait (일반보행보조기(RGO)와 동력보행보조기(PGO)의 보행시 에너지 소모도 비교 평가 분석)

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.104-110
    • /
    • 2008
  • The aim of this study ultimately is verifying that PGO gait is more efficient than RGO fur paraplegics because the air muscle assists hip flexion power in heel off movement. The gait characteristics of the paraplegic wearing the PGO or RGO are compared with that of a normal person. PGO with air muscles was used to analyze the walking of patients with lower-limb paralysis, and the results showed that the hip joint flexion and pelvic tilt angle decreased in PGO. In comparison to RGO gait, which is propelled by the movements of the back, PGO uses air muscles, which decreases the movement in the upper limb from a stance phase rate of 79$\pm$4%(RGO) to 68$\pm$8%. The energy consumption rate was 8.65$\pm$3.3 (ml/min/Kg) for RGO, while it decreased to 7.21t2.5(ml/min/Kg) for PGO. The results from this study show that PGO decreases energy consumption while providing support for patients with lower-limb paralysis, and it is helpful in walking for extended times.