• Title/Summary/Keyword: walking rehabilitation

Search Result 655, Processing Time 0.023 seconds

Design of the control Algorithm for Improvement of the Convenience the Active-type Walking Aid (전동 보행보조기의 편의성 향상을 위한 제어기 설계)

  • Lee, D.K.;Kong, J.S.;Goh, M.S.;Kang, S.J.;Lee, S.M.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • This paper aims to find the optimal control gain for enhancing the convenience of electric walking frames and design a control algorithm. With the recent advances in medical technology, there has been a rapid increase in the aging population and a variety of mobile walking frames have been developed for improvement of the quality of life. However, the manual walking frames of such mobile aids don't have any electric motor which helps facilitate elderly users' walking and thus are not efficient enough for the old people of weak strength to use especially when moving on uneven surfaces such as slopes or thresholds. The types of electric walking frames have been developed to overcome such inefficiency. Electric walking frames require users' control operations for motor driving unlike manual frames. Therefore, when they are not properly handled, it causes considerable inconvenience to their users. The present study compared the electric walking frames with manual ones in terms of operational convenience and attempted to improve the user convenience of walking frames varying the control value for user convenience based on certain standards. This paper presented a haptic sensor designed to recognize the will to walk and measure the degree of convenience and proposed a control algorithm for improvement of convenience. For user convenience, this paper evaluated the relative convenience of walking frames in view of changing differences between the center of vehicle (COV) and the center of position (COP). With the employment of an electric walking frame and a new measuring method, all the processes were experimentally tested and validated.

Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

Effects of Aerobic Exercise on Disease Severity and Walking Ability in Patients with Parkinson's Disease

  • Bang, Dae-Hyouk;Noh, Hyeon-Jeong
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.4
    • /
    • pp.227-231
    • /
    • 2016
  • Purpose: This study was conducted to explore the effects of aerobic exercise on the severity of disease and walking ability in patients with Parkinson's disease. Methods: Twelve patients with Parkinson's disease participated in the study. Participants were randomly assigned to either an aerobic exercise group (n=6) or a self-exercise group (n=6). All participants underwent treadmill training for 30 minutes. In addition, the experimental group (aerobic exercise group) and control group (self-exercise group) participated in a 30 minutes exercise program. In both groups, exercise was performed five times a week for four weeks. Outcome including disease severity (Unified Parkinson's Disease Rating Scale) and walking ability (10 m walking speed test, 6 minutes walking test, timed up-and-go test) were measured at baseline and after 4-weeks. Results: Significant differences in disease severity and walking ability were observed between the pre- and post-exercise groups (p<0.05). The improvement of disease severity and walking endurance was significantly higher in the experimental group than in the control group (p<0.05). Conclusion: These findings demonstrate that aerobic exercise is effective at improving disease severity and walking endurance in patients with Parkinson's disease.

Design and Control of a Dynamic PLS of the Biped Walking RGO for a Trainning of Rehabilitation considering Human Vibration (인체진동을 고려한 재활훈련용 이족보행 RGO 보조기의 생체역학적 해석 <인체진동 응력해석과 FEM을 중심으로>)

  • 장대진;김명회;양현석;백윤수;박영필;박창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.752-759
    • /
    • 2002
  • This paper presented a design and a control of a biped walking RGO and walking simulation by this system. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO type with 12-servo motors. The vibration evaluation of the dynamic PLS on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration for the spinal cord injuries. The gait of a biped walking RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by a ZMP (Zero Moment Point) of the biped walking RGO. It was designed according to a human wear type and was able to accomodate itself to a human environments. The joints of each leg were adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to recover effectively with a biped walking RGO.

  • PDF

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

The Effects of Dual-task Action Observation Physical Training on the Walking Ability and Activities of Daily Living in Chronic Stroke Patients (이중과제 동작관찰 신체훈련이 만성 뇌졸중 환자의 보행 능력과 일상생활 활동에 미치는 영향)

  • Lee, Hyun-Min;Lee, Jeong-A
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.2
    • /
    • pp.83-91
    • /
    • 2016
  • PURPOSE: The purpose of this study was to determine the efficacy of dual-task action observation training (AOT) and single-task AOT related with daily living task on walking ability and ADL performance in chronic stroke patients. METHODS: Twenty-seven chronic stroke subjects were included in the study. They were randomly assigned to three task categorieds as follows: whole dual-task AOT or partial dual-task AOT or single-task AOT rehabilitation. Whole dual-task AOT observed the movement at once and partial dual-task AOT observed the movement divided into 4 parts related functional gait and activities of daily living task for 2 minutes 30 seconds. Single-task AOT observed the movement related functional gait for 2 minutes 30 seconds. Both groups had physical training session for 12 minutes 30 seconds. The study was conducted for four weeks, with three training sessions a week, for twelve weeks. All subjects were evaluated for their walking ability and activities of daily living through devices, 10m walking test (10MWT), dynamic gait index (DGI), and Korea-Modified Barthel Index (K-MBI). RESULTS: A significant improvement of walking ability and ADL performance happened among dual-task AOT subjects, compared with a single-task AOT subjects, during the 4-weeks course treatment. The results of the study showed statistically significant differences in 10MWT (p<0.05) and DGI (p<0.05), and K-MBI (p<0.05). CONCLUSION: Our results indicated that dual-task AOT has a positive additional impact on recovery of walking ability and ADL performance in chronic stroke patients.

Electromechanically assisted walking in patients with cerebral palsy: A meta-analysis

  • Kim, Kwonhoi;Lee, Sukmin
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2021
  • Objective: This review aims to analyze the effects of electromechanically assisted walking in patients with cerebral palsy(CP). Design: A systematic review and meta-analysis. Methods: We reviewed systematically using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist guidelines. The inclusion criteria for this study were all CP patients. The intervention was electromechanically assisted walking. The outcome measures included gait parameters, function, spasticity. Studies excluded from this review were excluded from the review if they were non-English languages and if the study was not published as a full report, and if they were not randomized controlled trials (RCTs) designs. The RevMan 5.4 program was used to evaluate and explain the results. The risk of bias was evaluated independently by two reviewers. The quantitative meta-analysis, including mean differences (MD) and associated standard deviations (SD) from baseline and follow-up assessments, were recorded. Results: A total of 634 articles were searched. Two hundred eighty-nine duplicate articles were excluded, and 345 of 634 originals were left for selection. Of these 74 papers, 44 were out of topic, and 19 reported no mean or standard deviation values. And one was a non-experimental study. Finally, ten studies were included. All 10 RCTs of electromechanically assisted walking were analyzed. The meta-analysis showed a significant improvement in gait cycle (95% CI (confidence intervals), 0.09 to 0.19, I2=0%), Gross Motor Function Measure (GMFM) D (95% CI, 3.27 to 13.17, I2=0%) and GMFM E (95% CI, 0.22 to 6.41, I2=0%). Conclusions: Electromechanically assisted training helps in walking in patients with CP.

Effect of Side Walking Training Combined Squat on Balance and Gait Ability in Patients with Stroke (스쿼트를 병행한 옆으로 걷기 훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향)

  • Tae-Woo Kang;Da-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2024
  • Purpose: This study investigated the effects of side walking training combined with squats on the balance and gait ability of stroke patients. The purpose of this study was to provide fundamental data regarding the use of side walking training combined with squats among stroke patients. Methods: Thirty patients with stroke were randomly divided into an experimental group (n=15) that underwent side walking training combined with squats and a control group (n=15) that performed general rehabilitation exercises. Both groups performed their respective exercises for 30 minutes, five times a week for six weeks. Balance was assessed using the functional reach test and timed up and go test, while gait ability was evaluated using the 10-meter walk test. A paired t-test was performed to compare within-group changes before and after the intervention. Differences between the experimental and control groups were analyzed using an independent t-test. For all tests, the level of statistical significance was set at α=0.05. Results: After the exercise, significant within-group improvements in balance and gait ability were observed in both the experimental and control groups (p<0.05). There was also a significant between-group difference in balance and gait ability following the intervention (p<0.05). Conclusion: While general rehabilitation is commonly employed in treating stroke patients and is relatively effective, the application of side walking training combined with squats may offer additional benefits in terms of improving balance and gait ability in these patients.

Study on Efficacy of Gait Training for Hemiplegia Patients Using Lower-Limb Wearable Robot (착용형 하지 로봇을 이용한 편마비 보행 재활 훈련 효과에 관한 연구)

  • Ji, Younghoon;Yun, Deokwon;Jang, Hyeyoun;Lee, Dongbock;Khan, Abdul Manan;Kim, Sol;Kim, Mijung;Han, Jungsoo;Han, Changsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.879-883
    • /
    • 2015
  • Conventional gait rehabilitation requires at least three therapists in a traditional rehabilitation training program. Several robots have been developed to reduce human burden and increase rehabilitation efficacy. In this study, we present a lower-limb wearable robot (WA-H) for gait rehabilitation of hemiplegia patients, and propose a protocol of 12 weeks gait rehabilitation training program using WA-H. To identify the efficacy of the robot and protocols, we conducted a clinical study with two actual hemiplegia patients and observed a chronological change of ambulation ability through four assessments. We discovered the progression of results by 6 minute walking test, TUGT (Timed Up and Go Test), SPPB (Short Physical Performance Battery), BBS (Berg Balance Test), and Fugl-Meyer score. The torques generated in the normal side and paralyzed side of the patient became similar, indicating rehabilitation. The result also showed the walking of the paralysis patient improved and imbalance motion had considerable improved performance.