• Title/Summary/Keyword: walking force

Search Result 307, Processing Time 0.028 seconds

Development of the Pneumatic Manipulator of Gait Rehabilitation Robot using Fuzzy Control (퍼지제어기를 이용한 보행재활로봇의 공압식 조작기 개발)

  • Kim, Seung-Ho;Jeong, Seung-Ho;Ryu, Du-Hyeon;Jo, Gang-Hui;Kim, Bong-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.169-175
    • /
    • 2000
  • Stable and comfortable walking supports, which can reduce the body weight load partially, are needed for the recovering patients from neurologic disease and orthopedic procedures. In this paper, the development of a manipulator of rehabilitation robot for the patients with walking disabilities are studied. A force controller using pneumatic actuators is designed and implemented to the human friendly rehabilitation robot considering the safety of patients, reliability of the system, effectiveness of the unloading control and economic maintenance of the system. The mechanism of the unloading manipulator is devised to improve the sensibility for the movement of the patients such as direction and velocity. For the unloading force control, fuzzy control algorithm is adopted to reduce the partial body weight and suppress the unwanted fluctuation of the body weight load to the weak legs due to the unnatural working of the patients with walking disabilities. The effectiveness of the force control is experimentally demonstrated.

  • PDF

Motion Analysis of Tresidmill Walking with Various Slopes at a Normal Speed (Treadmill에서의 경사로 정상보행에 관한 동작분석)

  • Kim, Youngho;Yang, Giltae;Mun, Museong
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Kinematic and kinetic studies were performed to investigate the walking characteristics on a treadmill with various slopes at the same speed of 1.25m/sec. Six different slopes of the treadmill were selected . -4%(-$2.3^{\circ}$), 0%($0^{\circ}$), 5%($2.9^{\circ}$), 10%($5.7^{\circ}$), 15%($8.6^{\circ}$), and 20%($11.3^{\circ}$). With increased slopes of the treadmill, both hip and knee flexion angles significantly increased at initial contact, and the maximum hip flexion during swing phase and the maximum knee flexion during stance phase also significantly increased Ankle dorsiflexion angle at initial contact and the maximum dorsiflexion increased with increased slopes. However, the maximum plantarflexion in early swing was slightly reduced with increased slopes. Hip extension in late stance and the maximum knee flexion in early swing was not changed sigilificantly with increased slopes. As for the vertical ground reaction force, compared to the yond level walking, both the first and the second peak forces increased, but the mid-support force decreased.

  • PDF

Biomechanical Analysis of Lower Limbs on Speed of Nordic Walking (노르딕워킹의 속도에 따른 하지 관절의 운동역학적인 분석)

  • Yang, Dae-Jung;Lee, Yong-Seon;Park, Seung-Kyu;Kang, Jeong-Il;Lee, Joon-Hee;Kang, Yang-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, 26 normal subjects were studied to compare the biomechanical Analysis of Lower Limbs on Speed of Nordic Walking. The biomechanical variables were determined by performing three-dimensional gait analysis, and the measurements items were spatial and temporal parameters; vertical ground reaction force; and moments of the hip, knee, and ankle joints. The purpose of this study based on the speed of Nordic Walking to the vertical ground reaction force and joint moments of each were analyzed. Nordic Walking with poles while being whether this weight is reduced to load, not the improvement of muscle activity by identify Nordic walking is to allow efficient. The results of the analysis were follows. The spatial parameters of step length, stride length significantly increased with increase in velocity(p<0.001). The temporal parameters of step time, stride time, the duration of double support use, and the duration of single support use also significantly decreased with increase in velocity(p<0.001), but cadence significantly increased(p<0.01). Analysis of the changes in ground reaction force revealed that vertical ground reaction force significantly increased at the initial contact and the terminal stance and decreased at the mid stance with increase in velocity(p<0.001). Moments of the hip and knee joints significantly in creased with increase in velocity whereas that of the ankle joint did not. Gait analysis revealed that weight-bearing decreased and moments of the hip and knee joints increased with increase in velocity(p<0.01). The results of this study may help people perform Nordic walking efficiently and Nordic walking can be used in the gait training of people with an abnormal gait.

Aerodynamic Aspects of Dispersal Take-off Behavior Among the Phytoseiid Mites, Phytoseiulus persimilis, Neoseiulus fallacis and N. californicus (포식성 이리응애류, Phytoseiulus persimilis, Neoseiuzus fallacis와 N. californicus의 공중이동 이륙행동에 관한 공기역학적 연구)

  • Jung, Chul-Eui
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.125-129
    • /
    • 2001
  • Some wingless species have evolved take-off behaviors that enable them to become airborne. We examined aerodynamic attributes of dispersal relative to the body size and standing vs. walking postures for three phytoseiids that were suspected to have different take-off behaviors and dispersal abilities, Phytoseiulus persimilis Athias-Henriot, Neoseiulus fallacis (Carman) and N. californicus (McGregor). The average vertical profile of Pp in the walking position was significantly higher than those of Nf and Nc when in walking position. The body height of Nf in the standing posture was significantly greater than the body height of Pp when in the walking position. Cross-section areas also showed similar patterns of difference. Nf in the standing posture would have more than twice the drag force than in walking posture because of more fluid momentum in the wind boundary layer However, Pp in the walking position would have similar drag to Nf in the standing posture because of a higher vertical profile and larger size. Thus we add the scientific evidence of presence and absence of take-off behavior of some phytoseiid mites and evolutionary aspects of aerial dispersal are further discussed.

  • PDF

A study on the control for impactless gait of biped robot (이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF

The Effect of Genu Valgum on the Body Mass Index, Moment of Lower Limb Joints, Ground Reaction Force (신체질량지수, 하지관절의 모멘트, 지면반발력이 무릎외반슬에 미치는 영향)

  • Lee, Yong-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effect of genu valgum on the body mass index, movement of lower limb joints, and ground reaction force. Methods : Gait patterns of 30 college students with genu valgum were analyzed and the static Q angle of the femur was measured for selecting genu valgum of the subjects. To analyze the kinetic changes during walking, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. Results : As a result of measuring a relationship between genu valgum and Q-angle, as the Q-angle increases, it showed a genu valgum also increased. Body Mass Index showed a significant difference between the groups was higher in the genu valgum group.(p<.001). The analysis result showed that genu valgum had a significant effect on the internal rotation moment in the hip joint(p<.05). Also, genu valgum had a significant effect on the internal rotation moment of the knee joint(p<.05). The comparative analysis of the Medial-Lateral ground reaction force in the genu valgum group showed a tendency to increase the medial ground reaction force(p<.05). The vertical ground reaction forces of the middle of the stance phase(Fz0) showed a significant increase in genu valgum group(p<.05), in particular the results showed a decrease in the early stance phase(p<.001). Conclusion : In conclusion, the change in body mass is considered to be made by proactive regular exercise for improvement of the genu valgum. In addition, the prevention of the deformation caused by secondary of the genu valgum in this study may be used as an indicator of the position alignment rehabilitation for structural and functional improvements. Applying a therapeutic exercise program for the next lap will require changes in posture alignment.

Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running (보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향)

  • Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF