• Title/Summary/Keyword: walking environments

Search Result 161, Processing Time 0.024 seconds

Gait Phase Estimation Method Adaptable to Changes in Gait Speed on Level Ground and Stairs (평지 및 계단 환경에서 보행 속도 변화에 대응 가능한 웨어러블 로봇의 보행 위상 추정 방법)

  • Hobin Kim;Jongbok Lee;Sunwoo Kim;Inho Kee;Sangdo Kim;Shinsuk Park;Kanggeon Kim;Jongwon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2023
  • Due to the acceleration of an aging society, the need for lower limb exoskeletons to assist gait is increasing. And for use in daily life, it is essential to have technology that can accurately estimate gait phase even in the walking environment and walking speed of the wearer that changes frequently. In this paper, we implement an LSTM-based gait phase estimation learning model by collecting gait data according to changes in gait speed in outdoor level ground and stair environments. In addition, the results of the gait phase estimation error for each walking environment were compared after learning for both max hip extension (MHE) and max hip flexion (MHF), which are ground truth criteria in gait phase divided in previous studies. As a result, the average error rate of all walking environments using MHF reference data and MHE reference data was 2.97% and 4.36%, respectively, and the result of using MHF reference data was 1.39% lower than the result of using MHE reference data.

Effects of Task-Oriented Circuit Class Training on Improves Performance of Locomotor in Disabled Persons after Stroke (과제-지향 순회 훈련이 뇌졸중 장애인의 이동 능력에 미치는 효과)

  • Kim, Soo-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2011
  • Purpose : The purpose of this study was to identify the effects of circuit class training on the performance of locomotor tasks in chronic stroke. Methods : The study included 45 patients with chronic stroke randomly divided into experimetal group and control group. Both groups participated in exercise classes three times a week for 8weeks. The experimental group had 10 workstation of circuit class designed to improve walking. The control group practiced fitness exercises by equipment in health center. Walking performance was assessed by measuring walking speed(timed 10-meter walk and TUG), GAITRite analysis and peak vertical ground reaction force through the affected foot during walking. Results : The experimental group demonstrated significant improvement(p<.05) compared with the control group in 10-meter walking and vertical ground reaction force after training. The experimental group showed significant improvements in the walking velocity and cadence by GAITRite system(p<.05). Conclusion : Task- oriented circuit class training leads to improvements in locomotor function in chronic stroke. Further studies are necessary to occur in usual environments to improve walking performance.

Walking Assistance System for Sight Impaired People Based on a Multimodal Information Transformation Technique (멀티모달 정보변환을 통한 시각장애우 보행 보조 시스템)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • This paper proposes a multimodal information transformation system that converts the image information to the voice information to provide the sight impaired people with walking area and obstacles, which are extracted by an acquired image from a single CCD camera. Using a chain-code line detection algorithm, the walking area is found from the vanishing point and boundary of a sidewalk on the edge image. And obstacles are detected by Gabor filter of extracting vertical lines on the walking area. The proposed system expresses the voice information of pre-defined sentences, consisting of template words which mean walking area and obstacles. The multi-modal information transformation system serves the useful voice information to the sight impaired that intend to reach their destination. The experiments of the proposed algorithm has been implemented on the indoor and outdoor environments, and verified its superiority to exactly provide walking parameters sentences.

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.

Effects of the Physical Environment around Elementary Schools on Children's Walking Safety - A Case Study of the Elementary Schools in Changwon - (초등학교 주변 물리적 환경이 보행안전에 미치는 영향 - 창원시 초등학교를 대상으로 -)

  • Park, Kyung-Hun;Byeon, Ji-Hye
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.150-160
    • /
    • 2012
  • The purpose of this study is to examine the relationship between children's walking safety or risk of traffic accident and the physical environments around 20 public elementary schools in Changwon-si, Gyeongsangnam-do. Field surveys were conducted to assess the street-level objective and subjective walking environments. The GIS method was used for measuring the neighborhood-level land use patterns. Children's walking safety and risk of traffic accident data were collected from the 6,381 grade 5 to 6 students attending 18 elementary schools through the questionnaire survey. Correlation analysis showed that walking safety and risk of traffic accident of the elementary students were associated with the number of temporary or permanent obstacles on the sidewalk, traffic safety signs, driveway and street intersections, street lights, and percentage of detached housing area and road area on neighbourhood-level. This research will promote to help with constructing a safe routes to school and walking-friendly healthy community.

A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking (실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.358-366
    • /
    • 2006
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF programmable foot platforms. When a human walks on the locomotion interface (LI), the walking motions of the human are recognized by several sensors. Then, the sensed information is used by the LI for generation of infinite surfaces for continuous walking and the virtual environments for scene update according to motions of the human walking. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation. A novel navigation algorithm is suggested to allow natural navigation in virtual environments by utilizing conditions of normal gait analysis. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. From experiments, the subjects were satisfied with the reality of the suggested navigation algorithm using the locomotion interface. Therefore, the suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

Unified Strategy for Quadruped Walking Robot in Unstructured Environment

  • Kang, Tae-Hun;Son, Tae-Young;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.639-644
    • /
    • 2003
  • An unstructured environment requires a robot to possess outstanding mobility and advanced control algorithms since there exist complicated configurations such as obstacle, uneven surface, etc. Especially, when a quadruped robot walks in these environments, obstacles in the walking route will obstruct the walking or may give rise to a serious trouble. In this paper, we introduce a strategy for the stable walking in unstructured environment. The proposed strategy consists of two control algorithms. One is a collision{free algorithm to avoid obstacles and the other is an algorithm to overcome any obstacle. These are based on the obstacle detection method and a shape reconstruction algorithm, Which algorithms are described in detail. In addition, the validity of these algorithms have been demonstrated through experiments using a quadruped walking robot called "MRWALLSPECT III(Multifunctional Robot for Wall inSPECTion version 3 )".

  • PDF

A Study on Flickering Cycle of Green Signal and walking distance for the Pedestrian (녹색신호 점멸주기와 횡단보행거리가 보행자에게 미치는 영향분석)

  • Lee Sang Do;Son Joo Hee
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.273-278
    • /
    • 2002
  • Modern society is an interaction between many different environments. It is important to the mutual relationships between people and especially between people and the environment. One of the mutual relationships between people and the environment is the traffic system, especially the traffic signals which give priority to pedestrian and traffic flow. Traffic signals for the pedestrian on the crosswalk contribute to a safe road environment for the pedestrian, while the traffic signals for the pedestrian running for the flickering of the green signal causes psychological stress. Therefore, this study investigated whether the walking velocity was influenced by the flickering of the green signal or not. Also, this study investigated whether the walking distance had an effect on the walking velocity of the elderly pedestrian or not. It was proved that the flickering of the green signal and the walking distance influenced the walking velocity and subjective sensitiveness according to the result of this study.

  • PDF

Design of a Virtual Walking Machine for Virtural Reality Interface (가상현실 대화용 가상걸음 장치의 설계)

  • 윤정원;류제하
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

Dynamic Walking of a Biped Robot

  • Ma, Ling;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.138-140
    • /
    • 2004
  • This paper mainly deals with the dynamic walking of a biped robot. At first, in order to walk in various environments, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. A method to plan a walking pattern consisting of a foot trajectory and a hip trajectory is presented. The effectiveness of the proposed method is illustrated by simulation results. Secondly, the paper brings forward a balance control technique based on off-line walking pattern with real-time modification. At last, the concept of Zero Moment Point (ZMP) is used to evaluate dynamic stability.

  • PDF