• Title/Summary/Keyword: walking environment

Search Result 480, Processing Time 0.022 seconds

Comparison of characteristics during backward walking according to various stride frequencies in underwater and ground environments

  • Kim, Heejoong;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.2
    • /
    • pp.83-87
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the relationship between heart rate (HR), self-awareness of exercise intensity (rating of perceived exertion, RPE), and 5-meter walk test (5MWT) of persons affected by stroke during backward walking according to the preferred stride frequency (PSF), PSF+3 and PSF+6 conditions. Design: Cross-sectional study. Methods: A total of 11 persons with stroke (9 males, 2 females) participated voluntarily. All patients underwent backward walking under the PSF, PSF+3, and PSF+6 conditions in underwater and ground environments, and each condition was performed for 5 minutes. The HR, RPE, and walking speeds were measured during walking, and the measured values from underwater and ground environments were compared. Results: The HR and RPE in the ground environment were significantly increased (p<0.05), and although the 5MWT showed an increase in speed, it was not significant. The HR and RPE in the underwater environment were also significantly increased (p<0.05), however, although the 5MWT results was increased, it was not significant. The HR and RPE were significantly increased in the PSF+6 condition (p<0.05). Conclusions: The results of this study showed that backward gait training underwater can provide an appropriate exercise intensity for stroke survivors and suggests that exercises performed in an underwater environment is more effective compared to the ground environment.

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

A systems thinking approach to explore the structure of urban walking and health promotion in Seoul (서울시민의 보행과 건강증진에 관한 시스템 사고 기반의 구조 탐색)

  • Kim, Dong Ha;Chung, Chang-Kwon;Lee, Jihyun;Kim, Kwang Kee;JeKarl, Jung;Yoo, Seunghyun
    • Korean Journal of Health Education and Promotion
    • /
    • v.35 no.5
    • /
    • pp.1-16
    • /
    • 2018
  • Objectives: This study aimed to examine systems behavior of urban walking by analyzing a dynamic structure in Seoul, South Korea. Methods: As a systems thinking approach to urban walking and health promotion, we developed a Casual Loop Diagram based on literature review and expert consultation. The reviewed literature included: 1) qualitative studies that explores the experiences of urban walkers in Seoul; 2) a systematic review study on the built environmental factors related to walking; 3) policy research reports related to urban walking in Seoul. Results: The feedback structure for urban walking was related to the three urban environments (safety & walking environment, socioeconomic environment, and public transportation environment), and was characterized by a trade-off consisting of eight reinforcing loops and four balancing loops. Conclusions: The policies for a walkable city require multi-sectoral cooperation in order to change the causal loop structure related to the decline of walking. Therefore, it is necessary to establish legal and institutional conditions so that multi-sectoral and multidisciplinary approaches are possible.

Vision Based Sensor Fusion System of Biped Walking Robot for Environment Recognition (영상 기반 센서 융합을 이용한 이쪽로봇에서의 환경 인식 시스템의 개발)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.123-125
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tole-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Effect of Walking-Environment Factor on Pedestrian Safety (보행환경요인이 보행안전에 미치는 영향분석)

  • Lee, Su-Min;Hwang, Gi-Yeon
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.107-114
    • /
    • 2009
  • Human walking is essential and important mean of transportation. Pedestrian safety is recently important because accidents often happen while walking. This research is showing that Walking-environmental factors have effect on safety while walking. At first, exact 15 factors and conduct survey in the preceding research. After that, exact 4 important factors through factor analysis. At result of Multiple regression analysis, null hypothesis has proved to be true by satisfying therms which is F-value 9.211 and P-value 0.000. and come to the conclusion that walking-environmental factors influence pedestrian safety. 4 important factors can be listed by below. Pedestrian-road characteristic, landscape characteristic, commercial characteristic, walking characteristics by following influence. Especially, landscape characteristic and pedestrian-road characteristic can be vital factors.

The Effect of Built Environment on Walkability in Ho Chi Minh City Center District (건축 환경이 호치민시 보행편의성에 미치는 영향)

  • Loc, Duong Quy;Kim, Gyeng-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.288-297
    • /
    • 2018
  • Walking plays an important role in promoting peoples' health and reducing the increasing pressure of traffic congestion. However, for cities in developing countries located in areas with unfavorable weather, such as hot and humid weather, there is not much research on walking. Therefore, this study focuses on the walkability and the effect of the built environment on walking in the center district of Ho Chi Minh City, Vietnam. The correlation between the built environment and walking frequency of people was analyzed. Besides common elements that have been used in previous studies, other specific factors of the built environment were determined to estimate the walkability index. The results were then compared with the amount of walking obtained from surveys of local people. The result shows that people tend to walk more in the areas with a higher walkability index.

Walking Environment Survey for Development of Specification on Personal Mobility (PM) Device for Elderly (고령자용 개인교통수단 개발 사양 정의를 위한 보행환경 조사)

  • Kim, Youngmin;Kim, Jisoo;Moon, Byeongsup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.156-168
    • /
    • 2017
  • Personal mobility (PM) can increase the mobility of individual, so that the elderly can be set as the target group for using PM because of relatively low walking ability to normal. In this study, we design PM device for elderly that can be used safely in the walking environment such as sidewalk. There are various obstacles in the walking environment, so the device must have mechanical performance to overcome all of them. In this study, we survey the status and level of obstacle factors in walking environment to determine the dynamic performance of the PM device for elderly. We check up several guidelines about walking facilities to define obstacle points for the device, establish field survey methodologies, and conduct field survey for some specific road sections. Based on the survey results, we confirm the possible problems that could arise when the dynamic performance of the device is selected based on the facility-related criteria. We also define the performance requirements for the device based on the requirements for electric wheelchair.

Development of Quadruped Walking Robot AiDIN for Dynamic Walking (동적보행을 위한 생체모방형 4족 보행로봇 AiDIN의 개발)

  • Kang, Tae-Hun;Song, Hyun-Sup;Koo, Ig-Mo;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.203-211
    • /
    • 2006
  • In this research, a comprehensive study is performed upon the design of a quadruped walking robot. In advance, the walking posture and skeletal configuration of the vertebrate are analyzed to understand quadrupedal locomotion, and the roles of limbs during walking are investigated. From these, it is known that the forelimbs just play the role of supporting their body and help vault forward, while most of the propulsive force is generated by hind limbs. In addition, with the study of the stances on walking and energy efficiency, design criteria and control method for a quadruped walking robot are derived. The proposed controller, though it is simple, provides a useful framework for controlling a quadruped walking robot. In particular, introduciton of a new rhythmic pattern generator relieves the heavy computational burden because it does not need any computation on kinematics. Finally, the proposed method is validated via dynamic simulations and implementing in a quadruped walking robot, called AiDIN(Artificial Digitigrade for Natural Environment).

  • PDF

A study on improvement of walking safety in newtown schoolzone way (초등학교 통학환경개선에 관한 연구)

  • Yoon, Yong-Gil
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.2
    • /
    • pp.20-29
    • /
    • 2011
  • The purpose of this study is to suggest a scheme to provide children safer and more comfortable walking circumstances by survey current walking circumstances of schoolzone ways. A scheme suggested in this study was based on the analysis of survey to elementary school in 3 Newtowns(Dongtan, Dongbaek and Gumdan Districts) and actually surveyed data on school zone, the scheme can be summed up as follows; First, to avoid pedestrian roads being interrupted and to expend waiting space near schoolzone ways, several measures are needed including fixing roads and building additional gateway. Second, to secure pedestrians' safety in school zone ways should be planned and established more security concepts und facilities Third, to improve the walking safety in schoolzone way should be established specially "schoolzone B-plan".

Actual Situation Analysis of Walking Environment in Chongqing, China - Case Studies of First Experimental Elementary School and Zaozilanya Elementary School -

  • Hong, Shi;Suh, JooHwan
    • Journal of recreation and landscape
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • This study is about the investigation of the walking environment of the First Experimental Elementary School in Shapingba District of Chongqing City and the Zaozilanya Elementary School in Yuzhong District and the analysis of the pedestrian's consciousness. The improvement plan is obtained by comparing and analyzing the walking environment around the school. The survey results are as follows. According to the survey results of the walking environment around the school, the sidewalks of the two schools are relatively narrow, and there are more pedestrians crossing the road. There is a phenomenon of parking in both schools. The phenomenon of parking in Zaozilanya Elementary School is even more serious. In investigating the most important elements of the school's pedestrian environment, the setting of the signpost, the setting of the crosswalk and signal lights, the setting of the fence, the setting of the vehicle's deceleration facilities, and the control of the school gate are all necessary. Therefore, in order to create a safe and comfortable improvement plan for the surrounding environment of the school, first of all, in the improvement of the facilities around the school, the setting of the fence, the setting of the speed bump, the improvement of the crosswalk and the signal light. Second, in terms of restrictions, the scope of protection around the school needs to be expanded, and restrictions on parking and restrictions on vehicle traffic need to be implemented. Third, in terms of education and publicity, it is not only necessary to provide safety guidance for students to go to school, but also to provide drivers with driving safety education and publicity.