• Title/Summary/Keyword: wake-up scheduling

Search Result 7, Processing Time 0.024 seconds

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

The Simple Wakeup Scheduling Protocols Considering Sensing Coverage in Wireless Sensor Networks (무선 센서 네트워크에서 센싱 커버리지를 고려한 Wake-up 스케줄링 프로토콜)

  • Cho, Jae-Kyu;Kim, Gil-Soo;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.41-49
    • /
    • 2009
  • A crucial issue in deploying wireless sensor networks is to perform a sensing task in an area of interest in an energy-efficient manner since sensor nodes have limited energy Power. The most practical solution to solve this problem is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy In this paper, we present a simple wake-up scheduling protocol, which can maintain sensing coverage required by applications and yet increase network lifetime by turning off some redundant nodes. In order to do this, we use the concept of a weighted average distance. A node decides whether it is active or inactive based on the weighted average distance. The proposed protocol allows sensor nodes to sleep dynamically while satisfying the required sensing coverage.

Energy-Saving Distributed Algorithm For Dynamic Event Region Detection (역동적 이벤트 영역 탐색을 위한 에너지 절약형 분산 알고리즘)

  • Nhu, T.Anh;Na, Hyeon-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.360-365
    • /
    • 2010
  • In this paper, we present a distributed algorithm for detecting dynamic event regions in wireless sensor network with the consideration on energy saving. Our model is that the sensing field is monitored by a large number of randomly distributed sensors with low-power battery and limited functionality, and that the event region is dynamic with motion or changing the shape. At any time that the event happens, we need some sensors awake to detect it and to wake up its k-hop neighbors to detect further events. Scheduling for the network to save the total power-cost or to maximize the monitoring time has been studied extensively. Our scheme is that some predetermined sensors, called critical sensors are awake all the time and when the event is detected by a critical sensor the sensor broadcasts to the neighbors to check their sensing area. Then the neighbors check their area and decide whether they wake up or remain in sleeping mode with certain criteria. Our algorithm uses only 2 bit of information in communication between sensors, thus the total communication cost is low, and the speed of detecting all event region is high. We adapt two kinds of measure for the wake-up decision. With suitable threshold values, our algorithm can be applied for many applications and for the trade-off between energy saving and the efficiency of event detection.

  • PDF

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Clock Synchronization for Periodic Wakeup in Wireless Sensor Networks (무선 센서 망에서 주기적인 송수신 모듈 활성화를 위한 클락 동기)

  • Kim, Seung-Mok;Park, Tae-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.348-357
    • /
    • 2007
  • One of the major issues in recent researches on wireless sensor networks is to reduce energy consumption of sensor nodes operating with limited battery power, in order to lengthen their lifespan. Among the researches, we are interested in the schemes in which a sensor node periodically turns on and off its radio and requires information on the time when its neighbors will wake up (or turn on). Clock synchronization is essential for wakeup scheduling in such schemes. This paper proposes three methods based on the asynchronous averaging algorithm for clock synchronization in sensor nodes which periodically wake up: (1) a fast clock synchronization method during an initial network construction period, (2) a periodic clock synchronization method for saving energy consumption, and (3) a decision method for switching the operation mode of sensor nodes between the two clock synchronization methods. Through simulation, we analyze maximum clock difference and the number of messages required for clock synchronization.

  • PDF

A Scheduling Scheme Considering Multiple-Target Coverage and Connectivity in Wireless Sensor Networks (무선 센서 네트워크에서 다중 타겟 커버리지와 연결성을 고려한 스케줄링 기법)

  • Kim, Yong-Hwan;Han, Youn-Hee;Park, Chan-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.453-461
    • /
    • 2010
  • A critical issue in wireless sensor networks is an energy-efficiency since the sensor batteries have limited energy power and, in most cases, are not rechargeable. The most practical manner relate to this issue is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy. Especially, CTC (Connected Target Coverage) problem has been considered as a representative energy-efficiency problem considering connectivity as well as target coverage. In this paper, we propose a new energy consumption model considering multiple-targets and create a new problem, CMTC (Connected Multiple-Target Coverage) problem, of which objective is to maximize the network lifetime based on the energy consumption model. Also, we present SPT (Shortest Path based on Targets)-Greedy algorithm to solve the problem. Our simulation results show that SPT-Greedy algorithm performs much better than previous algorithm in terms of the network lifetime.