• Title/Summary/Keyword: vulnerable area

Search Result 714, Processing Time 0.034 seconds

Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - (농촌지역 기후변화 취약성 평가에 관한 연구 - 서천군을 대상으로 -)

  • Lee, Gyeongjin;Cha, Jungwoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.145-155
    • /
    • 2014
  • Since greenhouse gas emissions increase continuously, the authorities have needed climate change countermeasure for adapting the acceleration of climate change damages. According to "Framework Act on Low Carbon, Green Growth", Korean local governments should have established the implementation plan of climate change adaptation. These guidelines which is the implementation plan of climate change adaptation should be established countermeasure in 7 fields such as Health, Digester/Catastrophe, Agriculture, Forest, Ecosystem, Water Management and Marine/Fisheries. Basically the Korean local governments expose vulnerable financial condition, therefore the authorities might be assessed the vulnerability by local regions and fields, in order to establish an efficient implementation plan of climate change adaptation. Based on this concepts, this research used 3 methods which are LCCGIS, questionnaire survey analysis and analysis of existing data for the multiphasic vulnerable assessment. This study was verified the correlation among 7 elements of climate change vulnerability by 3 analysis methods, in order to respond climate change vulnerability in rural areas, Seocheon-gun. If the regions were evaluated as a vulnerable area by two or more evaluation methods in the results of 3 methods' comparison and evaluation, those areas were selected by vulnerable area. As a result, the vulnerable area of heavy rain and flood was Janghang-eup and Maseo-myeon, the vulnerable area of typhoon was Janghang-eup, Masan-myeon and Seo-myeon. 3 regions (i.e. Janghang-eup, Biin-myeon, Seo-myeon) were vulnerable to coastal flooding, moreover Masan-myeon, Pangyo-myeon and Biin-myeon exposed to vulnerability of landslide. In addition, Pangyo-myeon, Biin-myeon and Masan-myeon was evaluated vulnerable to forest fire, as well as the 3 sites; Masan-myeon, Masan-myeon and Pangyo-myeon was identified vulnerable to ecosystem. Lastly, 3 regions (i.e. Janghang-eup, Masan-myeon and Masan-myeon) showed vulnerable to flood control, additionally Janghang-eup and Seo-myeon was vulnerable to water supply. However, all region was evaluated vulnerable to water quality separately. In a nutshell this paper aims at deriving regions which expose climate change vulnerabilities by multiphasic vulnerable assessment of climate change, and comparing-evaluating the assessments.

Selection method of public transportation vulnerable area using GIS buffering analysis (GIS Buffering기법을 이용한 대중교통취약지구 선정방법)

  • Kim, Yeon-Woong;Chang, Sung-Bong;Jang, Gwang-Woo;Park, Min-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1739-1742
    • /
    • 2011
  • Public transportation network in our country is concentrated and advanced focusing on urban area in order to secure economic feasibility. As a result, as dependence on private vehicles is relatively getting higher in public transportation vulnerable area, traffic problem occurs since the average running speed in urban area is 22.5km/h. This paper has an objective to suggest an improvement plan by selecting public transportation vulnerable area, and defining according to urban structure, formation and function, and understand traffic characteristics and draw problems. As a method selecting public transportation vulnerable area, an area with high division rate of vehicle was selected as a primary proposed site by calculating division rate of means of public transportation according to area. Final proposed site was selected by using GIS Buffering technique aiming at selected proposed site, and selecting non-benefit area 500m outside, which is the road limit distance from each subway and bus station. Lastly, the degree of improvement effect was studied by constructing imaginary public transportation network aiming at final proposed site and comparing to the amount of change in division rate of means of transportation.

  • PDF

Prioritization of Control Areas using Vulnerable Areas by Non-point Source Pollution (비점오염 취약지역을 고려한 관리우선순위 설정)

  • Kim, Hong Tae;Shin, Dong Seok;Kim, Yong Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Vulnerable areas by non-point source pollution and prioritizing control areas were researched using hydrological and geomorphological data, non-point source loads, and water quality data. Using overlay analysis, vulnerable areas were graded with various scenarios. Vulnerable areas were selected near the metro city with impermeable landuse because non-point source loads and water quality data had influence on overlay analysis to rank vulnerable area. Analysis scenarios and weighted values can be changed under regional characteristics and given conditions.

Reactive Power Traceable System based Vulnerable Areas Detection for Reactive Power (무효전력 흐름 추적을 이용한 무효전력 취약지역 판단)

  • Choi, YunHyuk;Bae, MoonSung;Lee, Byongjun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1145-1153
    • /
    • 2015
  • The paper analyzes reactive power flow characteristic in power system by reactive power tracing. In addition, virtual buses are inserted in the algorithm to consider losses of transmission lines, and shunt capacitor treated as a reactive power generator. The results of simulation are analyzed by two points of view. The one is load’s point of view and another is generator’s point of view. Classic purpose of the reactive power tracing consists in the reactive power pricing. However, it is significantly used to select vulnerable area about line outage in this paper. To find the vulnerable area, reactive power tracing variations between pre-contingency and post-contingency are calculated at all load buses. In heavily load area, buses which has highest variation become the most vulnerable bus. This method is applied to the IEEE 39-bus system. It is compared with voltage variation result and VQ-margin to verify its effect.

A Study on Green Space Location Selection to Reduce Particulate Matter by Projecting Distributions of Emission Source and Vulnerable Groups - focusing on Seongdong-gu, Seoul - (미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 - 서울시 성동구를 대상으로 -)

  • Shin, Ye-Eun;Park, Jin-Sil;Kim, Su-Yeon;Lee, Sang-Woo;An, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.53-68
    • /
    • 2021
  • The study aims to propose a locating method of green space for reducing Particulate Matter (PM) in ambient air in conjunction with its source traces and vulnerable groups. In order to carry out the aims and purposes, a literature review was conducted to derive indicators of vulnerable area to PM. Based on the developed indicators, the vulnerable areas and green spaces creation strategies for each cluster were developed for the case of Seongdong-gu, Seoul. As a result, six indicators for vulnerability analysis were came out including the vulnerable groups (children's facilities, old people's facilities), emission sources (air pollutant emission workplaces, roads), and environmental indicators (particulate matter concentration, NDVI). According to the six selected indicators, the target area was divided into 39 hexagons and analyzed to result the most vulnerable areas to particulate matter. As a result of comprehensive vulnerability analysis, the Seongsu-dong area was found to be the most vulnerable to particulate matter, and 5 clusters were derived through k-means cluster analysis. Cluster 1 was analyzed as areas that most vulnerable to particulate matter as a result of the comprehensive analysis, therefore urgent need to create green spaces to reduce particulate matter. Cluster 2 was areas that mostly belonged to the Han River. Cluster 3 corresponds to the largest number of hexagons, and since many vulnerable groups are distributed, it was analyzed as a cluster that required the creation of a green spaces to reduce particulate matter, focusing on facilities for vulnerable groups. Three hexagons are included in cluster 4, and the cluster has many roads and lacks vegetation in common. Cluster 5 has a lot of green spaces and is generally distributed with fewer vulnerable groups and emission sources; however, it has a high level of particulate matter concentration. In a situation where various green spaces creation projects for reducing particulate are being implemented, it is necessary to consider the vulnerable groups and emission sources and to present green space creation strategies for each space characteristic in order to increase the effectiveness of such projects. Therefore, this study is regarded as meaningful in suggesting a method for selecting a green area for reducing PM.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

A Trace of Landcover Change in a Landslide Vulnerable Area (산사태 취약지에서의 토지피복상태 변화 추적)

  • Yang, In-Tae;Chun, Ki-Sun;Park, Jae-Kook;Lee, Sang-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.375-378
    • /
    • 2007
  • Kangwondo area is mountainous and landslide happens easily during the rainy period in summer time. Especially, when there is torrential downpour caused by the unusual weather change, there will be greater possibility to see landslide. Another reason behind landslide is the continuous forest fire in these several years. Since the surface of the earth has been changed by the fire, when rainfall comes, landslide just happens easily. Also, it is reported that landcover condition, excepted rainfall condition, is the most effect for determining landslide susceptibility area. In this study, it is determined a landslide vulnerable area and landcover information is extracted from four satellite image(Landsat TM), about the landslide vulnerable area, which is pictured for each year. And which distribution change is analyzed.

  • PDF

A Service Platform Development on the GIS-based Analysis and Management of the Fire-fighting Vulnerable Areas (GIS기반 소방취약지 분석관리 서비스 플랫폼 개발)

  • Song, Wanyoung;Cho, Kwanghyun;Cho, Myeongheum;Kim, Seonggon;Kim, Sungjae
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.269-278
    • /
    • 2015
  • Developed a service platform technology for automated that analyze the fire-fighting vulnerable area and equipped a map online. As a result, it is possible to provide the information necessary for the vulnerable area of the fire-fighting activity online. If progress on the study of the utilized service, it is possible to reduce the Golden Time of the fire fighting field. In this study, Confirmed the technical viability satisfactory to the management and service expansion improvements to fire-fighting vulnerable area.

Assessment of Vulnerable Area and Naval Ship's Vulnerability based on the Carleton Damage Function (칼튼 손상함수를 이용한 주요장비의 취약 면적 산정과 함정 취약성 평가 방법)

  • Lee, Jang Hyun;Choi, Won Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.274-280
    • /
    • 2018
  • This paper deals with the calculation of vulnerable areas of critical components required for the assessment of naval ship's vulnerability. Taking into account the effectiveness of threatening weapons, the probability density function of damage was used to assess vulnerable areas or vulnerabilities of critical components. It is shown that the vulnerable area of critical component can be simply computed from the damage function. Considering the weapon effectiveness of fragmentation and explosion on the target, both Carleton Damage Function and Rectangular Cookie Cutter Function representing the probability of damage are applied to the vulnerable area assessment. Carleton damage function is utilized to describe the weapon-target interaction in the vulnerability analyses. A problem of blast effect against an assumed naval ship is chosen as a case study. Vulnerability is evaluated by applying the suggested method to the equipments arranged in the engine room of the virtual ship.

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (선로정수 연속 조류계산을 이용한 가혹한 상정고장에 있어서 취약지역 도출방안에 대한 연구)

  • Seo Sang Soo;Lee Byong Jun;Kim Tae Ok;Kim Tae Kyun;Choo Jin Boo;Lee Jeong Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.113-116
    • /
    • 2004
  • Many methods to examine the vulnerable areal for the contingencies in the power system. The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can get the results of these analyses if only the results of load flow are convergent in severe contingencies, otherwise these methods are not adoptable. We can present a good index for overcoming severe contingencies, if we can get the vulnerable areas by bus sensitivity in severe contingencies, though the power flow equation is unsolvable. This paper simulates unsolvable severe contingencies by using branch parameter continuation power flow. We can compute the vulnerable areas in unsolvable severe contingencies by normal vector at a nose point of a $\nu-V$ curve. Presented method is checked the input reactive power of the vulnerable areas in KEPCO system.

  • PDF