• Title/Summary/Keyword: vulnerability of confined masonry

Search Result 5, Processing Time 0.017 seconds

Seismic vulnerability assessment of confined masonry wall buildings

  • Ranjbaran, Fariman;Hosseini, Mahmood
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.201-216
    • /
    • 2014
  • In this paper the vulnerability of the confined masonry buildings is evaluated analytically. The proposed approach includes the nonlinear dynamic analysis of the two-story confined masonry buildings with common plan as a reference structure. In this approach the damage level is calculated based on the probability of exceedance of loss vs a specified ground motion in the form of fragility curves. The fragility curves of confined masonry wall buildings are presented in two levels of limit states corresponding to elastic and maximum strength versus PGA based on analytical method. In this regard the randomness of parameters indicating the characteristics of the building structure as well as ground motion is considered as likely uncertainties. In order to develop the analytical fragility curves the proposed analytical models of confined masonry walls in a previous investigation of the authors, are used to specify the damage indices and responses of the structure. In order to obtain damage indices a series of pushover analyses are performed, and to identify the seismic demand a series of nonlinear dynamic analysis are conducted. Finally by considering various mechanical and geometric parameters of masonry walls and numerous accelerograms, the fragility curves with assuming a log normal distribution of data are derived based on capacity and demand of building structures in a probabilistic approach.

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola;Salsavilca, Jhoselyn;Yacila, Jhair;Camata, Guido
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Seismic vulnerability of old confined masonry buildings in Osijek, Croatia

  • Hadzima-Nyarko, Marijana;Pavica, Gordana;Lesic, Marija
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.629-648
    • /
    • 2016
  • This paper deals with 111 buildings built between 1962 and 1987, from various parts of the city of Osijek, for which, through the collection of documentation, a database is created. The aim of this paper is to provide the first steps in assessing seismic risk in Osijek applying method based on vulnerability index. This index uses collected information of parameters of the building: the structural system, the construction year, plan, the height, i.e., the number of stories, the type of foundation, the structural and non-structural elements, the type and the quality of main construction material, the position in the block and built-up area. According to this method defining five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The value of the vulnerability index can be changed depending on the structural systems, quality of construction, etc., by introducing behavior and regional modifiers based on expert judgments. Since there is no available data of damaged buildings under earthquake loading in our country, we will propose behavior modifiers based on values suggested by earlier works and on judgment based on available project documentation of the considered buildings. Depending on the proposed modifiers, the seismic vulnerability of existing buildings in the city of Osijek will be assessed. The resulting vulnerability of the considered residential buildings provides necessary insight for emergency planning and for identification of critical objects vulnerable to seismic loading.