• Title/Summary/Keyword: voxel

Search Result 417, Processing Time 0.036 seconds

The Voxelization of Surface Objects using File handling and Parallel Processing (파일 및 병렬 처리를 이용한 표면 객체의 복셀화 방안)

  • Lee, Su-Yeol;Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 2015
  • This paper suggests an efficient method for making the high resolution volexlized model from a polygonal surface object. A distinctive strength of the method is that a surface model, however complex one, can be transformed and formed an absolute voxelized solid model in a various resolution. It caused by producing a voxel by integrating the informations for the candidated voxels separately detected in each 3D-axial direction. This method reduces memory complexity by storing the information of voxels that is produced during the 2-phase volxelization(surface and inner voxelization) of a surface object in a binary file. For the computational efficiency, a parallel process using multi-threads is applied in the process of the inner voxelization, it also takes advantage of time complexity.

A 3D TEXTURE SYNTHESIS APPROACH

  • Su, Ya-Lin;Chang, Chin-Chen;Shih, Zen-Chung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.28-31
    • /
    • 2009
  • In this paper, a new approach for solid texture synthesis from input volume data is presented. In the pre-process, feature vectors and a similarity set were constructed for input volume data. The feature vectors were used to construct neighboring vectors for more accurate neighborhood matching. The similarity set which recorded 3 candidates for each voxel helped more effective neighborhood matching. In the synthesis process, the pyramid synthesis method was used to synthesize solid textures from coarse to fine level. The results of the proposed approach were satisfactory.

  • PDF

Multimodality Nonlinear Medical Image Registration based on Surface Information & Voxel Similarity (표면 및 복셀 유사성 기반 다중모달리티 비선형 의료영상정합)

  • Kim, Min-Jeong;Kim, Myoung-Hee
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.1633-1636
    • /
    • 2005
  • 의료영상정합은 환자의 해부학적 정보와 기능적 정보를 혼합함으로써 기능이상부위의 해부학적 위치를 판별하기 위한 목적으로 널리 이용되고 있다. 그러나 실제적으로 여러 종류의 환자영상 취득이 어렵거나 해부학적 영상정보가 손실되는 경우가 적지 않다. 따라서 표준 정상인 해부학적 영상과 환자 기능영상을 정합함으로써 보다 객관적인 환자 기능이상부위 분석이 요구된다. 이는 다중개체, 다중모달리티간 영상정합으로 기존의 표면정보 또는 복셀정보 기반 방법으로는 한계가 있다. 따라서 본 연구에서는 두 대상영상 표면 뿐 아니라 내부 볼륨까지 대응시킬 수 있는 표면정보와 복셀정보를 혼합 적용한 기법을 제안한다.

  • PDF

A study on the finite element modeling of femur based marching cube algorithm (Marching cube 알고리즘을 이용한 대퇴골의 유한요소 모델링에 관한 연구)

  • 곽명근;오택열;변창환;이은택;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1074-1077
    • /
    • 2002
  • Biomechanical behavior of the human femur is very important in various clinical situations. In this study, the data of FE models based on DICOM file exported from Computed tomography(CT). We generated FE models(voxel model, tetra model) of human femur using CT slide image. We compared them with Yon Mises stress results derived from finite element analysis(FEA). Comparing the two models, we found a correlation of them. As a result, the tetra model based proposed marching cube algorithm is a valid and accurate method to predict parameters of the complex biomechanical behavior of human femur.

  • PDF

The Evaluation of Image Quality using Time of Flight in Intracranial Magnetic Resonance Imaging : Comparison with 1.5 T and 3.0 T (뇌혈관 자기공명영상에서 Time-of-flight(TOF) 기법을 이용한 영상의 질 평가: 1.5 T 와 3.0 T 자기공명영상 비교)

  • Goo, Eunhoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Intracrnial 3D TOF MR angiography was performed in 30 normal volunteers with both 1.5 and 3.0 T MRI system with high resolutions. Used Voxel sizes were $0.39{\times}0.39{\times}0.2$(1.5 T) and $0.19{\times}0.19{\times}0.35$(3.0 T), respectively. High image quality and depiction of small vessel branches were equality demonstrated with 1.5 T and 3.0 T HR TOF MRA(p<0.05). Intracranial high resolution TOF MRA with 1.5 T and 3.0 T provides high diagnostic information with having merits and demerits in depiction of vascular branches.

  • PDF

Fast Algorithm to Generate the Array of Elementa 1 Image in Integral Imaging Systems (집적영상 기술에서의 요소영상 배열을 생성하기 위한 Fast 알고리즘)

  • Kwon, Young-Man;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.898-904
    • /
    • 2008
  • In this paper, we propose a fast algorithm to generate the array of elemental image in a computer generated integral imaging system. It generates the array of elemental image using depth information, needs less computing time to produce the result by using the concept of boundary area and computing the voxel within boundary area. By comparing the computing time of proposed algorithm with that of the existing algorithm theoretically and experimently, we proved the efficiency of this algorithm.

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm (완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘)

  • Nam, Haewon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

Review of Safety for CAM System in Mold Structure Manching (금형 구조부 가공을 위한 CAM 시스템 안정성 조사)

  • Kim, Hyung-Man;Kim, Jong-Gurl
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.239-254
    • /
    • 2006
  • In mold structure machining, tool interference is a phenomenon which results from a collision between a blade of tool and a workpiece. Also tool collision is a phenomenon which results from a collision of holder with the object to be machined. These phenomena not only cause damages to mold and tool but also increase machining time and cost. To detect a collision of a tool to mold structure, first of all, the mold structure and a tool must be defined with famous geometric models such CSG, B-rep, and Voxel. A tool is defined as a combination of the blade, the shank, and the holder. This thesis reviews various collision detection algorithms using z-map and computer 3D graphic collision detection algorithms for the tool in machining a mold structure.

  • PDF

Automatic 3D model generation from 2D X-ray images

  • Le Minh Tuan;Kim Hae-Kwang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.361-364
    • /
    • 2004
  • This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.

  • PDF