• Title/Summary/Keyword: voting

Search Result 538, Processing Time 0.023 seconds

A Methodology for Predicting Changes in Product Evaluation Based on Customer Experience Using Deep Learning (딥러닝을 활용한 고객 경험 기반 상품 평가 변화 예측 방법론)

  • An, Jiyea;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.

Effects of Source Credibility of Political Youtubers on Voters' Attitude toward Contents and Political Decision Making (정치 유튜버의 공신력 속성이 콘텐츠 태도와 유권자의 정치적 의사결정에 미치는 영향)

  • Kim, Hana
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.563-574
    • /
    • 2022
  • The purpose of this study is to investigate effects of source credibility of political youtubers on attitude toward contents and politicians/political party and political decision making. The total number of 326 responses from online survey were analyzed. Results indicate that three factors of source credibility, similarity, charisma, and expertise positively affected attitude toward political contents on youtube in statistical significance. Five attributes of source credibility, familiarity, charisma, similarity, attractiveness, and trustworthiness positively affected attitude toward political youtube contents and politicians/political parties. Furthermore, attitude toward contents and politicians/political parties significantly increased voting intention to politicians/political parties.

Credit Risk Evaluations of Online Retail Enterprises Using Support Vector Machines Ensemble: An Empirical Study from China

  • LI, Xin;XIA, Han
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.89-97
    • /
    • 2022
  • The e-commerce market faces significant credit risks due to the complexity of the industry and information asymmetries. Therefore, credit risk has started to stymie the growth of e-commerce. However, there is no reliable system for evaluating the creditworthiness of e-commerce companies. Therefore, this paper constructs a credit risk evaluation index system that comprehensively considers the online and offline behavior of online retail enterprises, including 15 indicators that reflect online credit risk and 15 indicators that reflect offline credit risk. This paper establishes an integration method based on a fuzzy integral support vector machine, which takes the factor analysis results of the credit risk evaluation index system of online retail enterprises as the input and the credit risk evaluation results of online retail enterprises as the output. The classification results of each sub-classifier and the importance of each sub-classifier decision to the final decision have been taken into account in this method. Select the sample data of 1500 online retail loan customers from a bank to test the model. The empirical results demonstrate that the proposed method outperforms a single SVM and traditional SVMs aggregation technique via majority voting in terms of classification accuracy, which provides a basis for banks to establish a reliable evaluation system.

Review the Recent Fraud Detection Systems for Accounting Area using Blockchain Technology

  • Rania Alsulami;Raghad Albalawi;Manal Albalawi;Hetaf Alsugair;Khaled A. Alblowi;Adel R. Alharbi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.109-120
    • /
    • 2023
  • With the increasing interest in blockchain technology and its employment in diverse sectors and industries, including: finance, business, voting, industrial and many other medical and educational applications. Recently, the blockchain technology has played significant role in preventing fraud transactions in accounting systems, as the blockchain offers high security measurements, reduces the need for centralized processing, and blocks access to the organization information and system. Therefore, this paper studies, analyses, and investigates the adoption of blockchain technology with accounting systems, through analyzing the results of several research works which have employed the blockchain technology to secure their accounting systems. In addition, we investigate the performance of applying the deep learning and machine learning approaches for the purpose of fraud detection and classification. As a result of this study, the adoption of blockchain technology will enhance the safety and security of accounting systems, through identifying and classifying the possible frauds that may attack the accounting and business organizations.

Web 3.0 Business Model Canvas of Metaverse Gaming Platform, The Sandbox

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • We look at Web 3.0 business model canvas (BMC) of metaverse gaming platform, The Sandbox (TS). As results, the decentralized, blockchain-based platform, TS benefits its creators and players by providing true ownership, tradability of decentralized assets, and interoperability. First, in terms of the governance and ownership, The SAND functions a governance token allowing holders to participate in decision and SAND owners can vote themselves or delegate voting rights to other players of their choice. Second, in terms of decentralized assets and activities, TS offers three products as assets like Vox Edit as a 3D tool for voxel ASSETS, Marketplace as NFT market, and Game Maker as a visual scripting toolbox. The ASSETS made in Vox Edit, sold on the Marketplace, can be also utilized with Game Maker. Third, in terms of the network technology, in-game items are no longer be confined to a narrow ecosystem. The ASSETS on the InterPlanetary File System (IPFS) are not changed without the owner's permission. LAND and SAND are supported on Polygon, so that users interact with their tokens in a single place. Last, in terms of the token economics, users can acquire in-game assets, upload these assets to the marketplace, use for paying transaction fees, and use these as governance token for supporting the foundation.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

An Improved Face Recognition Method Using SIFT-Grid (SIFT-Grid를 사용한 향상된 얼굴 인식 방법)

  • Kim, Sung Hoon;Kim, Hyung Ho;Lee, Hyon Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.299-307
    • /
    • 2013
  • The aim of this paper is the improvement of identification performance and the reduction of computational quantities in the face recognition system based on SIFT-Grid. Firstly, we propose a composition method of integrated template by removing similar SIFT keypoints and blending different keypoints in variety training images of one face class. The integrated template is made up of computation of similarity matrix and threshold-based histogram from keypoints in a same sub-region which divided by applying SIFT-Grid of training images. Secondly, we propose a computation method of similarity for identify of test image from composed integrated templates efficiently. The computation of similarity is performed that a test image to compare one-on-one with the integrated template of each face class. Then, a similarity score and a threshold-voting score calculates according to each sub-region. In the experimental results of face recognition tasks, the proposed methods is founded to be more accurate than both two other methods based on SIFT-Grid, also the computational quantities are reduce.

Fuzzy Inference-based Replication Scheme for Result Verification in Desktop Grids (데스크톱 그리드에서 결과 검증을 위한 퍼지 추론 기반 복제 기법)

  • Gil, Joon-Min;Kim, Hong-Soo;Jung, Soon Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.4
    • /
    • pp.65-75
    • /
    • 2009
  • The result verification is necessary to support a guarantee for the correctness of the task results be executed by any unspecified resources in desktop grid environments. Typically, voting-based and trust-based result verification schemes have been used in the environments. However, these suffer from two potential problems: waste of resources due to redundant replicas of each task and increase in turnaround time due to the inability to deal with a dynamic changeable execution environment. To overcome these problems, we propose a fuzzy inference-based replication scheme which can adaptively determine the number of replicas per task by using both trusty degree and result return probability of resources. Therefore our proposal can reduce waste of resources by determining the number of replicas meeting with a dynamic execution environment of desktop grids, not to mention an enhancement of turnaround time for entire asks. Simulation results show that our scheme is superior to other ones in terms of turnaround time, the waste of resources, and the number of re-replications per task.

  • PDF

Result Verification Scheme Using Resource Distribution Information in Korea@Home PC Grid Systems (Korea@Home PC 그리드 시스템에서 자원 분포 정보를 이용한 결과검증 기법)

  • Gil, Joon-Min;Kim, Hong-Soo;Choi, Jang-Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.1
    • /
    • pp.97-107
    • /
    • 2008
  • The result verification that determines correctness for the work results calculated in each PC is one of the most important issues in PC grid environments. In this literature, voting-based and trust-based schemes have been mainly used to guarantee the correctness of work results. However, these schemes suffer from both waste of resource utilization and high computation delay because they can not effectively cope with dynamic computational environments. To overcome these shortcomings, we introduce the distribution information of PC resources based on credibility and availability into result verification phase. Using this information, we propose a new result verification scheme, which can determine the correctness of work results by each PC resources' credibility and cope with the dynamic changing environments by each PC resources' availability. To demonstrate the efficiency of our result verification scheme, we evaluate the performance of our scheme from the viewpoints of turnaround time and resource utilization, utilizing resource distribution information in the Korea@Home that is a representative PC grid system in domestic. We also compare the performance of our scheme with that of other ones.

  • PDF