• Title/Summary/Keyword: vortices

Search Result 786, Processing Time 0.021 seconds

Numerical Study of Flow Around an Oscillating Sphere (진동하는 구 주위의 유동에 관한 수치적 연구)

  • Lee, Jin-Woog;Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.

Numerical Simulations of Unsteady Wakes Using a Discrete Vortex Method (이산와류법을 이용한 비정상 후류의 수치적 모사)

  • Han, Cheol-Hui;Choe, Geun-Hyeong;Jo, Jin-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.397-404
    • /
    • 2001
  • The behavior of unsteady wake vortices for the two-dimensional flat plate is simulated by a discrete vortex method. The flat plates and their wakes are represented by vortex sheets. The vortex sheets are replaced with discrete vortices. The freely deforming wake sheets are computed as a part of solution and the ground effect is included by a image method. In order to predict wake shapes accurately and to model closely coupled aerodynamic interference, a vortex core model and a vortex core addition scheme are used. The simulated wake shapes convecting behind the plates in unsteady motion are compared to a flow visualization result and other numerical results. The present results agree well with them. The present method is also applied to the aerodynamic analysis of flat plates in tandem configuration in ground effect.

Measurements of Endwall Heat(Mass) Transfer Coefficient in a Linear Turbine Cascade Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 터빈 익렬 끝벽에서의 열(물질)전달계수 측정)

  • Lee, Sang-U;Jeon, Sang-Bae;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.356-365
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade. Its profile is based on the mid-span of the first-stage rotor blade in a industrial gas turbine. By using the naphthalene sublimation technique, local heat (mass) transfer coefficients are measured for two different free-stream turbulence intensities of 1.3% and 4.7%. The results show that local heat (mass) transfer Stanton number is widely varied on the endwall, and its distribution depends strongly on the three-dimensional vortical flows such as horseshoe vortices, passage vortex, and corner vortices. From this experiment, severe heat loads are found on the endwall near the blade suction side as well as near the leading and trailing edges of the blade. In addition, the effect of the free-stream turbulence on the heat (mass) transfer is also discussed in detail.

Flow structure of wake behind a finite circular cylinder (자유단이 있는 원주의 후류 유동특성에 관한 실험적 연구)

  • Lee, Sang-Jun;Jeong,Yong-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2014-2022
    • /
    • 1996
  • Flow characteristics of the wake behind a finite circular cylinder(FC) mounted on a flat plate was experimentally investigated. Three finite cylinder models having aspect ratio (length to diameter ratio, L/D) of 6,10 and 13 were tested in this study. Wake velocity was measured by a hot-wire anemometry at Reynolds number of 20,000, and the results were compared with those of two-dimensional circular cylinder. As a result, the free-end effect on the wake structure becomes more dominant with decreasing the aspect ratio(L/D) of the finite cylinder. Invisid flow entrained into the wake region decreases the turbulence intensity and periodicity of the vortex shedding due to existence of the free end. From spectral analysis and cross correlation of the velocity signals, vortices having 24Hz frequency characteristics are found in the down wash flow just behind the free end. There exists very complicated flow near the free end due to interaction between the entrained flow and streamwise vortices. Vortex formation region is destroyed significantly in the near wake and shows quite different wake structures from those of 2-D cylinder.

The study of turbulent flow structures in a wavy channel using direct numerical simulation (직접수치모사를 통한 Wavy Channel 내의 난류 유동 구조의 연구)

  • Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1807-1812
    • /
    • 2004
  • Sinusoidal wavy channel is one of the most commonly used devices in the industry for achieving mixing and heat transfer. Here we report on results obtained from the DNS of flow inside the wavy channel performed using the finite volume technique. As a primary stage to obtain the optimal design for heat transfer and mixing, this study observed the basic flow structures in a wavy channel. The mass flow rate is kept constant with friction Reynolds number of $Re_{\tau}$ = 140 . Time- and space-averaged and instantaneous flow fields are illustrated to observe the flow structures. Although the direct comparison of results between turbulent wavy and flat channel is somehow difficult due to the different flow phenomena derived from different configuration, here the mean streamwise velocity and RMS of velocities at same $Re_{\tau}$ of two different channels are compared. The basic difference between wavy and flat channel flow is the existence of small scale wall vortices along the walls in a wavy channel. These vortices make flow more complex, which will accompany the increase of heat transfer, pressure drop and drag.

  • PDF

Organized Structure of Turbulent Boundary Layer with Rod-roughened Wall (표면조도가 있는 난류경계층 내 난류구조)

  • Lee, Jae-Hwa;Lee, Seung-Hyun;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.463-470
    • /
    • 2008
  • Turbulent coherent structures near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The surface roughness rods with the height $k/{\delta}=0.05$ are arranged periodically in $Re_{\delta}=9000$. The roughness sublayer is defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer ($y/{\delta}=0.15$)have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

Characteristics of Forces upon Two-dimensional Circular Cylinder by External Singularities (외부 특이점이 2차원 원주에 작용하는 힘의 특성)

  • Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.782-786
    • /
    • 2010
  • Thrust deduction related to the prediction of power performance of a ship is rather resistance increase, and as a preliminary study for it forces upon a circular cylinder in a uniform flow of ideal fluid due to singularities located behind it are investigated. The circle theorem is used to get the complex velocity potential for the flow field under consideration, and the Blasius theorem is applied to obtain forces upon the circular cylinder. As singularities sinks, point vortices and dipoles and their combinations are treated. $\varepsilon$, standing for the strength of a singularity, and $\delta$, representing the distance between the cylinder and the singularity, are important small parameters for the resistance and lateral forces. For sinks or point vortices it is shown that the dimensionless forces upon the cylinder is O($\epsilon$) if $\epsilon$= O($\delta$) is assumed, and the same holds for dipoles if $\epsilon$= O(${\delta}^3$) is supposed. Forces upon the cylinder by a symmetric pair of sinks are greater than a single sink located at the central plane since there is an additional term due to cross effects, and the same is also valid for the case of dipole. Combination of dipole and a point vortex is also considered and a few new aspects are clarified.

Experimental Investigation of the flow around an Oscillating Circular Cylinder by Using a PIV System (진동하는 원형주상체 주위의 유동에 관한 PIV를 이용한 실험적 연구)

  • Song Museok;Lee Sang-Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.60-67
    • /
    • 2003
  • Flow around an oscillating circular cylinder was experimentally investigated. With varying Keulegen-Carpenter(KC) number from 10 to 30 the flow field with vortex sheddings and the related hydrodynamic fortes exerting on the cylinder were measured. A newly developed PW(paricle image velocimetry) successfully captured the complex vortical flows varying with the KC number and the flow patterns were 'traverse street', 'single pairing' and 'double pairing' of vortices with increasing KC number, At a certain KC number range the lift force undergoes a transition showing little periodicity due to surrounding complicated shedded vortices.

  • PDF

The Effect of the Making Methods of Hollow Fiber Active Layer on Performance for Nanofiltration Helical Module (Nanofiltration Helical Module에서 Hollow Fiber Active Layer의 성형법에 따른 성능변화에 관한 연구)

  • ;Belfort, Georges
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 1997
  • The effects of varing axial flow rate and solute concentration on the performance of both module sets made by different methods for active layer formation were compared and determined. All experiments were conducted simultaneously at the same transmembrane pressure and energy consumption per membrane area. In every comparative run between the presence of Dean vortices in a helical module and absence of such vortices in a linear module from the first module set, the solution fluxes and permeabilities were higher, and in some cases substantially higher for the vortex flow. With pure water, the permeabilities of both modules from the second module set were different and the flux in a linear module was 150% higher than in the helical module. This explained both module membranes were totally different.

  • PDF