• Title/Summary/Keyword: vortex scale

Search Result 236, Processing Time 0.022 seconds

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I) (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성)

  • Lee, Chang-Ho;Kim, Yeong-Seok;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

A Comparative Study on Similarity of Flow Fields Reconstructed by VIC# Data Assimilation Method (VIC# 자료동화 기법을 통해 재구축된 유동장의 상사성에 관한 비교 연구)

  • Jeon, Young Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.23-30
    • /
    • 2018
  • The present study compares flow fields reconstructed by data assimilation method with different combinations of parameters. As a data assimilation method, Vortex-in-Cell-sharp (VIC#), which supplements additional constraints and multigrid approximation to Vortex-in-Cell-plus (VIC+), is used to reconstruct flow fields from scattered particle tracks. Two parameters, standard deviation of Gaussian radial basis function (RBF) and grid spacing, are mainly tested using artificial data sets which contain few particle tracks. Consequent flow fields are analyzed in terms of flow structure sizes. It is demonstrated that sizes of the flow structures are proportional to an actual scale of the standard deviation of RBF. It implies that a combination of larger grid spacing and smaller standard deviation which preserves the actual standard deviation is able to save computational resources in case of a low track density. In addition, a simple comparison using an experimental data filled with dense particle tracks is conducted.

Study on Flow Instability and Countermeasure in a Draft tube with Swirling flow

  • Nakashima, Takahiro;Matsuzaka, Ryo;Miyagawa, Kazuyoshi;Yonezawa, Koichi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.230-239
    • /
    • 2015
  • The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant (배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF

Empirical decomposition method for modeless component and its application to VIV analysis

  • Chen, Zheng-Shou;Park, Yeon-Seok;Wang, Li-ping;Kim, Wu-Joan;Sun, Meng;Li, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.301-314
    • /
    • 2015
  • Aiming at accurately distinguishing modeless component and natural vibration mode terms from data series of nonlinear and non-stationary processes, such as Vortex-Induced Vibration (VIV), a new empirical mode decomposition method has been developed in this paper. The key innovation related to this technique concerns the method to decompose modeless component from non-stationary process, characterized by a predetermined 'maximum intrinsic time window' and cubic spline. The introduction of conceptual modeless component eliminates the requirement of using spurious harmonics to represent nonlinear and non-stationary signals and then makes subsequent modal identification more accurate and meaningful. It neither slacks the vibration power of natural modes nor aggrandizes spurious energy of modeless component. The scale of the maximum intrinsic time window has been well designed, avoiding energy aliasing in data processing. Finally, it has been applied to analyze data series of vortex-induced vibration processes. Taking advantage of this newly introduced empirical decomposition method and mode identification technique, the vibration analysis about vortex-induced vibration becomes more meaningful.

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

Numerical study of propeller boss cap fins on propeller performance for Thai Long-Tail Boat

  • Kaewkhiaw, Prachakon
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2021
  • The present paper purposes a numerical evaluation of the Thai Long-Tail Boat propeller (TLTBP) performance by without and with propeller boss cap fins (PBCF) in full-scale operating straight shaft condition in the first. Next, those are applied to inclined shaft conditions. The actual TLTBP has defined an inclined shaft propeller including the high rotational speed, therefore vortex from the propeller boss and boss cap (hub vortex) have been generated very much. The PBCF designs are considered to weaken of vortex behind the propeller boss which makes the saving energy for the propulsion systems. The blade sections of PBCF developed from the original TLTBP blade shape. The integrative for the TLTBP and the PBCF is analyzed to increase the performance using computational fluid dynamics (CFD). The computational results of propeller performance are thoroughly compared between without and with PBCF. Moreover, the effects of each PBCF component are computed to influence the TLTBP performance. The fluid flows around the propeller blades, propeller boss, boss cap, and vortex have been investigated in terms of pressure distribution and wake-fields to verify the increasing efficiency of propulsion systems.

Reconstruction of a near-surface tornado wind field from observed building damage

  • Luo, Jianjun;Liang, Daan;Weiss, Christopher
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.389-404
    • /
    • 2015
  • In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

Vortex Cavitation Inception Delay by Attaching a Twisted Thread (Twisted thread에 의한 보텍스 캐비테이션 초생지연)

  • Park, Sang-Il;Lee, Seung-Jae;You, Guek-Sang;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.259-264
    • /
    • 2014
  • Tip vortex cavitation (TVC) is important for naval ships and research vessels that require raising the cavitation inception speed to maximum possible values. The concepts for alleviating the tip vortex are summarized by Platzer and Souders (1979), who carried out a thorough literature survey. Active control of TVC involves the injection of a polymer or water from the blade tip. The main effect of such mass injection (both water and polymer solutions) into the vortex core is an increase in the core radius, consequently delaying TVC inception. However, the location of the injection port needs to be selected with great care in order to ensure that the mass injection is effective in delaying TVC inception. In the present study, we propose a semi-active control scheme that is achieved by attaching a thread at the propeller tip. The main idea of a semi-active control is that because of its flexibility, the attached thread can be sucked into the low-pressure region closer to the vortex core center. An experimental study using a scale model was carried out in the cavitation tunnel at the Seoul National University. It was found that a flexible thread can effectively suppress the occurrence of TVC under the design condition for a model propeller.