• Title/Summary/Keyword: vortex method

Search Result 920, Processing Time 0.031 seconds

Half-edge data structure를 이용한 객체지향 Solid modeling

  • 최봉구;박윤선
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.96-99
    • /
    • 1996
  • 본 연구는 CAD/CAM에서 3차원 물체를 표현하는 기법중 하나인 Solid Modeling을 구성하는 데이터 구조를 객체지향화 함으로써 보다 효율적이고 유연한 설계개발환경을 제공하고자 한다. 이를 위해서 가장 일반적으로 Solid Modeling을 표현하는 데이터 구조인 기존의 Half-Edge Data Structure를 기본모델로 하여 점(Vortex), 선(Edge), 면(Face), 입체(Solid)를 객체 Class로 하고 Euler Operator를 Method로 하는 객체지향 반모서리 데이터 구조(Object Oriented Half-Edge Data Structure)를 개발하였다.

  • PDF

A Numerical Study on the Flow around a Rudder using Blowing Effect (선박의 타 주위 유동 및 분사효과에 관한 수치적 연구)

  • Park Je-Jun;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.185-190
    • /
    • 1998
  • A Numerical simulation on the flow around a Rudder with blowing is performed by Finite Volume Method. The governing equations are three dimensional incompressible Navier-Stokes equation and Continuity equation, Flow field around a finite Rudder including tip vortex is simulated and the change of the lift force by blowing is analyzed.

  • PDF

Numerical Analysis of Flow around Rectangular Cylinders with Various Side Ratios

  • Rokugou Akira;Okajima Atsushi;Kamiyama Kohji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-37
    • /
    • 2003
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0 is carried out for Reynolds number of 1000 by using multi-directional finite difference method in multi-grid. The predicted results are well compared with the experimental data. It is found that fluid dynamics characteristics alternate between high pressure mode. and low pressure mode of the base pressure for rectangular cylinder of D/H=0.2-0.6.

  • PDF

An Unstructured Mesh Technique for Rotor Aerodynamics

  • Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • An unstructured mesh method has been developed for the simulation of steady and time-accurate flows around helicopter rotors. A dynamic and quasi-unsteady solution-adaptive mesh refinement technique was adopted for the enhancement of the solution accuracy in the local region of interest involving highly vortical flows. Applications were made to the 2-D blade-vortex interaction aerodynamics and the 3-D rotor blades in hover. The interaction between the rotor and the airframe in forward flight was investigated by introducing an overset mesh technique.

  • PDF

A Study on Wake Flow Characteristics of vertical Plate with Various Coner Shape (모서리 형상에 따른 수직벽 후류특성에 관한 연구)

  • Lee, Cheol-Jae;Cho, Dae-Hwan
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2011
  • In this study, the velocity distribution according to upper side coner shape of underwater construction with rectangular cylinder was measured with PIV method and the wake flow characteristics was considered. According to the coner shape, the flow pattern of wake flow was also differed greatly and the step-shaped coner of cut-off ratio B/H=0.06 was similar in the slope shape in result.

A numerical study of the incompressible flow over a circular cylinder near a plane wall using the Immersed Boundary - Finite Difference Lattice Boltzmann Method (가상경계 유한차분 격자 볼츠만 법을 이용한 평판근처 원형 실린 더 주위의 비압축성 유동에 관한 수치적 연구)

  • Yang, Hui-Ju;Jeong, Hae-Kwon;Kim, Lae-Sung;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2731-2736
    • /
    • 2007
  • In this paper, incompressible flow over a cylinder near a plane wall using the Immersed Boundary. Finite Difference Lattice Boltzmann Method (IB-FDLBM) is implemented. In this present method, FDLBM is mixed with IBM by using the equilibrium velocity. We introduce IBM so that we can easy to simulate bluff-bodies. With this numerical procedure, the flow past a circular cylinder near a wall is simulated. We calculated the flow patterns about various Reynolds numbers and gap ratios between a circular cylinder and plane wall. So these are enabled to observe for vortex shedding. The numerical results are found to be in good agreement with those of previous studies.

  • PDF

Numerical simulations of two-dimensional floating breakwaters in regular waves using fixed cartesian grid

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.206-218
    • /
    • 2014
  • The wave attenuation by floating breakwaters in high amplitude waves, which can lead to wave overtopping and breaking, is examined by numerical simulations. The governing equations, the Navier-Stokes equations and the continuity equation, are calculated in a fixed Cartesian grid system. The body boundaries are defined by the line segment connecting the points where the grid line and body surface meet. No-slip and divergence free conditions are satisfied at the body boundary cell. The nonlinear waves near the moving body is defined using the modified marker-density method. To verify the present numerical method, vortex induced vibration on an elastically mounted cylinder and free roll decay are numerically simulated and the results are compared with those reported in the literature. Using the present numerical method, the wave attenuations by three kinds of floating breakwaters are simulated numerically in a regular wave to compare the performance.

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method (비정렬 유한 체적법을 이용한 횡류홴 유동장 해석)

  • Kang, Dong-Jin;Bae, Sang-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.7-15
    • /
    • 2005
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate aye carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method (차분 래티스볼츠만법에 Subgrid 난류모델의 적용)

  • Kang Ho-Keun;Ahn Soo-Whan;Kim Jeong-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.