• Title/Summary/Keyword: vortex method

Search Result 921, Processing Time 0.025 seconds

EXISTENCE THEOREM FOR NON-ABELIAN VORTICES IN THE AHARONY-BERGMAN-JAFFERIS-MALDACENA THEORY

  • Zhang, Ruifeng;Zhu, Meili
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper, we discuss the existence theorem for multiple vortex solutions in the non-Abelian Chern-Simons-Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena, on a doubly periodic domain. The governing equations are of the BPS type and derived by Auzzi and Kumar in the mass-deformed framework labeled by a continuous parameter. Our method is based on fixed point method.

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(1))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2014
  • Mixed convective vortex flow in the three-dimensional rectangular channel filled with high viscous fluid(Pr=909) is investigated computationally under various operating conditions. The Reynolds number is varied from 0 to $5{\times}10^{-1}$, the Rayleigh number from $10^3$ to $5{\times}10^4$. The three-dimensional governing equations are discretized using the finite volume method. The effects of Reynolds number and Rayleigh number are presented and discussed. From a parametric study, it is found that vortex flow pattern of mixed convection in rectangular channels can be classified into three flow patterns basically, but the new vortex flow structures containing wave rolls are found, which are affected by Rayleigh number and Reynolds number. From this results, we can draw a flow regime map to delineate various vortex flow patterns in the high viscosity fluid mixed convective flow.

Vortex breakdown in an axisymmetric circular cylinder with rotating cones (회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구)

  • Kim, J.W.;Eum, Ch.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF

Propeller Tip Vortex Cavitation Control Using Water Injection (물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어)

  • Lee, Chang-Sup;Han, Jae-Moon;Kim, Jin-Hak;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

Signal processing method of bubble detection in sodium flow based on inverse Fourier transform to calculate energy ratio

  • Xu, Wei;Xu, Ke-Jun;Yu, Xin-Long;Huang, Ya;Wu, Wen-Kai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3122-3125
    • /
    • 2021
  • Electromagnetic vortex flowmeter is a new type of instrument for detecting leakage of steam generator, and the signal processing method based on the envelope to calculate energy ratio can effectively detect bubbles in sodium flow. The signal processing method is not affected by changes in the amplitude of the sensor output signal, which is caused by changes in magnetic field strength and other factors. However, the detection sensitivity of the electromagnetic vortex flowmeter is reduced. To this end, a signal processing method based on inverse Fourier transform to calculate energy ratio is proposed. According to the difference between the frequency band of the bubble noise signal and the flow signal, only the amplitude in the frequency band of the flow signal is retained in the frequency domain, and then the flow signal is obtained by the inverse Fourier transform method, thereby calculating the energy ratio. Using this method to process the experimental data, the results show that it can detect 0.1 g/s leak rate of water in the steam generator, and its performance is significantly better than that of the signal processing method based on the envelope to calculate energy ratio.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.