• 제목/요약/키워드: vortex lattice

검색결과 109건 처리시간 0.019초

Effect of thermal annealing on low-energy C-ion irradiated MgB2 thin films

  • Jung, Soon-Gil;Son, Seung-Ku;Pham, Duong;Lim, W.C.;Song, J.;Kang, W.N.;Park, T.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.13-17
    • /
    • 2019
  • We investigate the effect of thermal annealing on $MgB_2$ thin films with thicknesses of 400 and 800 nm, irradiated by 350 keV C-ions with a dose of $1{\times}10^{15}atoms/cm^2$. Irradiation by low-energy C-ions produces atomic lattice displacement in $MgB_2$ thin films, improving magnetic field performance of critical current density ($J_c$) while reducing the superconducting transition temperature ($T_c$). Interestingly, the lattice displacement and the $T_c$ are gradually restored to the original values with increasing thermal annealing temperature. In addition, the magnetic field dependence of $J_c$ also returns to that of the pristine state together with the restoration of $T_c$. Because $J_c$(H) is sensitive to the type and density of the disorder, i.e. vortex pinning, the recovery of $J_c$(H) in irradiated $MgB_2$ thin films by thermal annealing indicates that low-energy C-ion irradiation on $MgB_2$ thin films primarily causes lattice displacement. These results provide new insights into the application of low-energy irradiation in strategically engineering critical properties of superconductors.

해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구 (Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency)

  • 전민우;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

  • Jung, Yoo-Yeon;Kim, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.63-68
    • /
    • 2011
  • Aerodynamic characteristics of a wing during fold motion were investigated in order to understand how variations or changes in such characteristics increase aircraft performance. Numerical simulations were conducted, and the results were obtained using the unsteady vortex lattice method to estimate the lift, drag and the moment coefficient in subsonic flow during fold motion. Parameters such as the fold angle and the fold angular velocity were summarized in detail. Generally, the lift and pitching moment coefficients decreased as the angle increased. In contrast, the coefficients increased as the angular velocity increased.

실시간 공력모델을 이용한 비행 시뮬레이션 연구 (Study of Flight Simulation using Real-Time Aerodynamic Model)

  • 이창호;박영민;최형식
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

FMI 표준을 활용한 관절형 로터/공력 연계시뮬레이션 (Articulated Rotor/Aerodynamics Co-Simulation Using FMI Standard)

  • 백승길;박중용
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this research is to develop co-simulation methodology of codes developed in different modeling and simulation environment. We develop aerodynamic FMU(Functional Mock-up Unit) meeting FMI(Functional Mock-up Interface) specification version2 utilizing Legacy FORTRAN aerodynamic code based on unsteady vortex lattice method. It is concluded that making FMU is possible utilizing Legacy code made in any language which can be compiled and linked with object in FMI API coded in C language. This paper explains QTronic's method of using FMU SDK(Software Development Kit) and suggestion for using FORTRAN properly. Finally, we make articulated rotor/aerodynamics co-simulation by integrating aerodynamics FMU and rotor FMU developed by Modelica.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해 (Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis)

  • 이송준;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

3차원 차분격자볼츠만 모델에의 내부자유도 적용 및 유동소음 모사 (Application of the Internal Degree of Freedom to 3D FDLB Model and Simulations of Aero-Acoustic)

  • 강호근;안수환;김정환
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.586-596
    • /
    • 2006
  • A 3-dimensional FDLB model with additional internal degree of freedom is applied for diatomic gases such as air, in which an additional distribution function is introduced. Direct simulations of aero-acoustic by using the applied model and scheme are presented. Speed of sound is correctly recovered. As typical examples, the Aeolian tone emitted by a circular column is successfully simulated even very low Mach number flow. Acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular column is captured. Full three-dimensional acoustic wave past a compact block like pentagon, furthermore, is also emitted in y direction as dipole like sound.

소형 태양광 무인항공기의 개념 설계 (Conceptual Design for Small Solar Powered Uninhabited Aerial Vehicle)

  • 이상협;박상혁;배재성
    • 한국항공운항학회지
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 2011
  • Several studies on the development for solar powered uninhabited aerial vehicles(UAVs) are under way as the use of the renewable energy becomes more and more important these days. This paper is for the conceptual design by a discrete and iterative method. An initial design point with 1.5 meter wing span is determined in the global design, which deploys the mass and energy balances among each component of UAV including solar cells and airframe. Then, the iteration for subsystems is carried out with the help of Vortex Lattice Method(VLM) to optimize the aircraft configuration and the solar power system. It is demonstrated in simulations that the optimized design increases the flight time from 62 to 120 minutes when the solar power system is installed. Also, the associated dynamic analysis reveals that the designed small aircraft has the acceptable stability and controllability.