• 제목/요약/키워드: vortex lattice

검색결과 109건 처리시간 0.026초

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

Horn Type 타(舵)와 한쌍(雙)의 타(舵)의 타직압력(舵直壓力) 계산(計算)에 관한 연구(硏究) (Calculation of the Rudder Normal Force for a Horn Type Rudder and Twin Rudder)

  • 이승건
    • 대한조선학회지
    • /
    • 제27권4호
    • /
    • pp.27-31
    • /
    • 1990
  • 양력면(揚力面)의 양력계산(揚力計算)에 흔히 쓰이고 있는 방법(方法)을 크게 나누면 Vortex Lattice 법(法)과 Mode Function법(法)이 있다. 잘 알려진 것 처럼, Vortex Lattice법(法)은 해(解)의 수렴성(收斂性)은 좋으나 계산시간(計算時間)이 많이 걸리는 문제점(問題點)이 있고, Mode Function법(法)은 계산시간(計算時間)은 짧으나 해(解)가 특이(特異)해 지는 경우가 있다. 그러므로 본(本) 논문(論文)에서는 양방법(兩方法)의 장점(長點)들을 살리도록, 양력면(揚力面)을 Span 방향(方向)으로 분할(分割)하고 각(各) Strip Mode Function을 사용하여 Vortex를 분포(分布)시켜, 양력면이론(揚力面理論)으로 양력(揚力)을 계산(計算)하였다. 우선 Horn Type의 반균형타(半均衡舵)에 본(本) 계산법(計算法)을 적용(適用)하여 타직압력(舵直壓力)을 계산(計算)하고 타(舵) 단독시험(單獨試驗)을 병행(竝行)하여 계산법(計算法)의 유용성(有用性)을 검증(檢證)하였다. 그 결과(結果), Stall과 같은 비선형적(非線形的) 유체현상(流體現象)이 일어나지 않는 한(限), 본(本) 계산법(計算法)은 유용(有用)하다는 결론(結論)을 얻었다. 끝으로, 본(本) 계산법(計算法)을 평행(平行)하게 늘어선 한척(隻)의 장방형타(長方形舵)에 적용(適用)하여 두 타(舵) 사이의 상호간섭(相互干涉)도 계산(計算)하였다.

  • PDF

자유후류 해석을 통한 수평축 풍력 터빈의 성능 및 소음 예측 (Wind Turbine Performance and Noise Prediction by Using Free Wake Method)

  • 신형기;선효성;이수갑
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.134-141
    • /
    • 2002
  • 본 연구에서 곡선 와동 요소와 CVC (Constant Vorticity Contour) 후류 모델이 수평축 풍력 터빈의 공력 성능 및 소음을 예측하기 위해 사용되었다. 또한 2차 회귀에 근거하여 회전수의 예측을 하였다. 광대역 소음을 예측은 경험식에 근거한 방법을 사용하였다. 직선 와동요소 대신에 BCVE (Basic Curved Vortex Element)와 SIVE(Self Induction Vortex Element)를 사용하는 곡선 와동 요소를 사용하였으며 CVC 후류 모델에서 와동의 강도는 블레이드의 스팬방향 및 와동을 따라서 일정하다고 가정하였다. 이렇게 만들어진 자유 후류는 와동 격자를 대치한다. 본 방법은 여타의 방법에 비해 휠씬 적은 계산 시간을 요구하며 후류의 정확한 구조를 모사할 수 있었다. 검증을 위해서는 김준모의 실험과 Zond사의 Z-40FS의 모델을 성능 예측 결과와 WTS-4와 USWP를 소음 예측 결과와 비교하였다. 계산 결과는 실제의 실험치와 잘 일치하는 것으로 나타났다.

직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석 (Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM)

  • 김우진;김학봉
    • 한국항공운항학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

가상경계 유한차분 격자 볼츠만 법을 이용한 평판근처 원형 실린 더 주위의 비압축성 유동에 관한 수치적 연구 (A numerical study of the incompressible flow over a circular cylinder near a plane wall using the Immersed Boundary - Finite Difference Lattice Boltzmann Method)

  • 양희주;정해권;김래성;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2731-2736
    • /
    • 2007
  • In this paper, incompressible flow over a cylinder near a plane wall using the Immersed Boundary. Finite Difference Lattice Boltzmann Method (IB-FDLBM) is implemented. In this present method, FDLBM is mixed with IBM by using the equilibrium velocity. We introduce IBM so that we can easy to simulate bluff-bodies. With this numerical procedure, the flow past a circular cylinder near a wall is simulated. We calculated the flow patterns about various Reynolds numbers and gap ratios between a circular cylinder and plane wall. So these are enabled to observe for vortex shedding. The numerical results are found to be in good agreement with those of previous studies.

  • PDF

LBM을 이용한 쇄기형 물체 주위의 유동특성 (Fluid Flow Behaviors around Wedge-shaped Body using Lattice Boltzmann Method)

  • 무하마드아부타헤르;정호윤;이연원
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.24-30
    • /
    • 2009
  • 본 연구에서는 기존에 널리 사용되어져 온 Wavier-Stokes 방정식을 풀이하는 전통적인 CFD 해석에서 벗어나 최근에 그 응용 분야를 넓혀가고 있는 LBM의 해석코드를 개발하고, 이를 이용하여 이차원 채널속에 놓여진 쇄기형 물체 주위의 유동특성을 조사하였다. D2Q9 격자계 및 Bhatnagar-Gross-Krook (LBGK) 모델을 채택하였으며, 수치해석 결과는 기존의 실험결과의 잘 일치하였다. 쇄기형 물체에서 와의 형성 및 방출 Reynolds 수 범위는 $32{\leq}Re{\leq}620$ 이며, 원형실린더에서 알려진 Karman 와열을 형성하는 주기적인 와방출은 대칭적인 와가 형성된 후 $Re{\geq}85$부터 시작되며 Reynolds 수의 증가에 따라 와 방출 주파수는 증가되었다.

  • PDF

차분 래티스볼츠만법에 Subgrid 난류모델의 적용 (Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method)

  • 강호근;안수환;김정환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

유전자 알고리즘을 이용한 컨테이너선을 위한 침식예방용 최적방향타 단면 설계 (Study on Optimization of Anti-erosion Rudder Section of Large Container Ship by Genetic Algorithm)

  • 김문찬;이언식;변태영
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.403-410
    • /
    • 2008
  • This paper describes the optimization of the rudder section by the genetic algorism based on VLM(Vortex Lattice Method) and panel method. The developed propeller-rudder analysis program has been validated by comparing with experimental data. The research extends to optimize the anti-erosion rudder section of the large container ship. The object function is the amount of pressure at leading edge of rudder which is closely related with erosion phenomena. The optimized rudder has been compared with conventional rudder with NACA 0021 section by analyzing with the developed program. The finally optimized section has low and mild pressure distribution in comparison with the NACA rudder. The experiments is expected to be carried out for the validation of the present optimization and more parametric study of section geometry is also expected to be conducted in the near future.

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

Numerical Prediction of Steady and Unsteady Performances of Contrarotating Propellers

  • Lee, Chang-Sup;Kim, Young-Gi;Baek, Myung-Chul;Yoo, Jae-Hoon
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.29-40
    • /
    • 1995
  • This paper describes the procedure to predict steady and unsteady performances of a contrarotating propeller(CRP) by a mixed formulation of the boundary value problem(BVP) far the flow around a CRP. The blade BVP is treated by a classical vortex lattice method, whereas the hub BVP is solved by a potential-based panel method. Blades and trailing wakes are represented by a vortex and/or source lattice system, and hubs are represented by normal dipole and source distributions. Both forward and aft propellers are solved simultaneously, thus treating the interaction effect without iteration. The unsteady performance is computed directly in time domain. The new numerical procedure requires a large amount of storage and computing time, which is however no longer a limit in a modern computer system. Sample computations show that the steady performance compares very well with the experiments. The predicted unsteady behavior shows that the dominant harmonics of the total forces are multiples of not only the number of blades of the forward and aft propellers but also the product of both blade numbers. The magnitude of the latter harmonics, present also in uniform oncoming flow, may reach abort 50% of the mean torque for the aft propeller, which in turn may cause a serious vibration problem in the complicated contrarotating shafting system.

  • PDF