• 제목/요약/키워드: vortex interaction

검색결과 363건 처리시간 0.023초

2차원 수치모형을 이용한 원형군락 하류의 흐름특성 수치모의 (Numerical Simulation of Flow Characteristics behind a Circular Patch of Vegetation using a Two-Dimensional Numerical Model)

  • 김형석;박문형
    • 한국수자원학회논문집
    • /
    • 제48권11호
    • /
    • pp.891-903
    • /
    • 2015
  • 본 연구는 식재된 개수로에서 흐름특성을 모의할 수 있는 수심 적분된 2차원 수치모형을 이용하여 원형 식생역 주변의 흐름을 수치모의하였다. 식생영향을 고려하기 위해 식생항력 항을 지배방정식에 추가하였고 다양한 식생체적비율(SVF) 조건에 따른 수치모의를 수행하였다. 흐름이 원형 식생역을 통과하고 하류에 저유속 구간인 후류영역(wake region)을 형성하며 식생체적비율이 0.08 이상이면 재순환 영역이 발생하였다. 재순환 발생위치는 식생체적비율이 감소하면 식생역에서 더욱 하류로 이동하였다. 후류영역을 지나 원형 식생역 양 측면에서 유발된 전단층들의 상호작용에 의해 von $K{\acute{a}}rm{\acute{a}}n$ 와열이 발생하였다. 원형 식생역 하류에서 발생하는 와류는 식생체적비율이 0.08 이상이 되면 나타나기 시작하였고 발생위치는 난류운동에너지가 최대값을 보이는 위치와 일치하였다. 최대 난류운동에너지는 식생체적비율이 감소하면 줄어드는 것으로 나타났고 최대값의 발생위치는 점점 하류로 이동하였다.

Lock-in 영역에서 원형실린더의 와류유기진동 전산해석 (Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime)

  • 이승수;황규관;손현아;정동호
    • 한국전산구조공학회논문집
    • /
    • 제29권1호
    • /
    • pp.9-18
    • /
    • 2016
  • 고층빌딩이나 해양 라이저와 같은 세장 구조물은 구조시스템의 동적 불안정의 주요 원인인 와류유기진동(vortex-induced vibration, VIV)에 의한 동하중에 매우 취약하다. 와류유기진동이 라이저의 고유진동수 영역에서 발생하는 경우 Lock-in현상으로 피로파괴의 우려가 있다. 본 논문에서는 Lock-in 영역에서 구조물과 유동의 동적거동에 대한 수치해석을 다루었으며, 유동조건 변화에도 불구하고 공진 주파수가 유지되는 현상에 대해 분석하였으며, 유입유동에 대해 수직방향으로 자유진동하는 1자유도의 2차원 원형실린더 단면에 대한 비정상 층류를 가정하였다. 각 시간 단계에서 물체의 움직임을 고려하여 유동장 격자를 재생성하며 비정상 유동과 물체의 운동에 대한 지배방정식을 순차적으로 수치해석하여 유체-구조 연성해석을 수행하였다. 결과는 선행연구와 잘 일치함을 보여주었고, Lock-in 현상에 대한 특성을 잘 나타내었다. Lock-in 영역에서는 양력뿐만 아니라 항력도 크게 증가함을 보여주었으며, 실린더의 수직변위는 직경의 20%까지 이름을 나타내었다. 양력과 수직변위의 상관분석을 통해 실린더가 Lock-in 영역에서 양력과 수직변위의 위상차가 동기로부터 반동기로 천이함을 확인하였으며, 이러한 변화가 Lock-in 영역에서 나타나는 공진거동의 원인이 되는 것으로 판된되었다.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.

앙각을 가진 타원형 실린더 후류와 평판 경계층의 상호작용에 대한 연구 (Interaction between Turbulent Boundary Layer and Wake behind an Elliptic Cylinder at Incidence)

  • 최재호;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.465-471
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angel of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder according to the direction of the angle of attack.

  • PDF

차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석 (The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft)

  • 최원;김광해;이원중
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.

앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구 (Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence)

  • 최재호;이상준
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.