• 제목/요약/키워드: vortex interaction

검색결과 363건 처리시간 0.023초

원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례 (A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System)

  • 최병화;박수일;전창빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

레이저 간섭 석판술로 전처리된 AAO을 이용한 Fe 나노점 제작 (Fabrication of Fe Nanodot Using AAO Prepatterned by Laser Interference Lithography)

  • 강진혁;황현미;이성구;이재용
    • 한국자기학회지
    • /
    • 제17권3호
    • /
    • pp.137-140
    • /
    • 2007
  • 레이저 간섭 석판 장비(Laser Interference Lithography; LIL)를 이용하여, Anodic Aluminum Oxide(AAO) 나노기공의 배열을 향상 시켰다. 이후 진공에서 Fe와 Cu를 AAO/Si에 성장하고, AAO를 제거하여 Cu/Fe(20 nm) 나노구조를 제작하였다. AAO의 나노기공과 나노구조는 전처리 과정에서 제작된 PR(photoresist) 나노선을 따라 1차원으로 배열되었다. 자성 나노구조의 자기이력곡선으로부터 이들이 vortex 구조를 가지며, 쌍극자 상호작용이 지배적임을 확인하였다.

Numerical Prediction of Steady and Unsteady Performances of Contrarotating Propellers

  • Lee, Chang-Sup;Kim, Young-Gi;Baek, Myung-Chul;Yoo, Jae-Hoon
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.29-40
    • /
    • 1995
  • This paper describes the procedure to predict steady and unsteady performances of a contrarotating propeller(CRP) by a mixed formulation of the boundary value problem(BVP) far the flow around a CRP. The blade BVP is treated by a classical vortex lattice method, whereas the hub BVP is solved by a potential-based panel method. Blades and trailing wakes are represented by a vortex and/or source lattice system, and hubs are represented by normal dipole and source distributions. Both forward and aft propellers are solved simultaneously, thus treating the interaction effect without iteration. The unsteady performance is computed directly in time domain. The new numerical procedure requires a large amount of storage and computing time, which is however no longer a limit in a modern computer system. Sample computations show that the steady performance compares very well with the experiments. The predicted unsteady behavior shows that the dominant harmonics of the total forces are multiples of not only the number of blades of the forward and aft propellers but also the product of both blade numbers. The magnitude of the latter harmonics, present also in uniform oncoming flow, may reach abort 50% of the mean torque for the aft propeller, which in turn may cause a serious vibration problem in the complicated contrarotating shafting system.

  • PDF

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES) (Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 한국항공우주학회지
    • /
    • 제34권7호
    • /
    • pp.79-88
    • /
    • 2006
  • 본 논문에서는 대와동모사를 이용하여 모형 가스터빈 연소기에서 난류 예혼합연소의 선회 유동구조와 화염특성이 검토되었다. 비정상 화염 거동을 모사하기 위하여 G-방정식 화염편 모델이 적용되었다. 결과로서, 입구 선회수 증가에 따른 코너 및 중앙 재순환 유동이 뚜렷한 차이를 보이며, 화염의 길이도 점차 감소됨을 확인 할 수 있었다. 또한 강선회 조건에서 역화현상의 원인이 확인되었다. 정확한 비정상 화염거동의 모사를 위하여, 연소실 내 음향파 거동의 예측성능이 우선적으로 검토되었으며, 스텝 모서리 근처에서 생성된 와동이 화염면 변동에 가장 큰 영향을 주고 있음을 알 수 있었다. 마지막으로 비정상 화염-와동 상호작용에 대한 해석을 통해 선회와 음향파의 전개로부터 생성된 와동의 진동이 화염면 및 열발생의 변동과 밀접하게 관련되어짐을 체계적으로 규명하였다.

축대칭 몰수체의 유효반류 추정 (Prediction of the Effective Wake of an Axisymmetric Body)

  • 김기섭;문일성;안종우;김건도;박영하;이창섭
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.410-417
    • /
    • 2019
  • An axisymmetric submerged body(L=5.6m, Diam=0.53m) is installed in Large Cavitation Tunnel (LCT) of KRISO and the nominal and total velocities without and with the propeller in operation, respectively, are measured using Laser Doppler Velocimeter (LDV). The flow field is nearly axisymmetric except the wake of the supporting strut, and is considered ideal to study the hydrodynamic interaction between the propeller and the oncoming axisymmetric sheared flow. The measured velocity data are then provided to compute the propeller-induced velocity to get the effective velocity, which is defined by subtracting the propeller-induced velocity from the total velocity. We adopted, in computing the induced velocity, two different methods including the vortex lattice method and the vortex tube actuator model to evaluate the resultant effective velocity distribution. To secure a fundamental base of experimental data necessary for the research on the effective wake, we measured the drag of the submerged body, the nominal and total velocity distributions at various axial locations for three different tunnel water speeds.

포텐셜 유동에 의한 프로펠러-WIG선의 상호작용 및 성능해석 (Analysis of Propeller-WIG Interaction and Performance in Potential Flow)

  • 전호환;김민규
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.11-22
    • /
    • 2001
  • 프로펠러-WIG(Wing in Ground Effect)선의 상호작용 및 성능을 포텐셜 유동에 의해 해석하였다. 프로펠러는 보오텍스 격자법(VLM)을 사용하였고 WIG선은 포텐셜 기저 패널법을 사용하여 각 경계조건을 만족시키면서 반복계산을 통하여 상호작용 및 성능을 해석하였다. 자유수면은 강체로 가정하여 경상법을 사용하였다. 프로펠러-WIG의 상호작용 및 성능을 해석하기에 앞서 발표된 실험결과와 계산결과가 있는 MP101 프로펠러와 MR-21 타의 상호작용 및 성능해석을 수행하여 개발된 프로그램의 정도를 검증하였다. 프로펠러-WIG선의 상호작용해석은 프로펠러의 부착위치, 직경 및 회전수의 변화에 따른 비행고도 높이 변화에 대한 양력 및 피치모멘트를 계산하여 비교하였다. 날개 앞에 부착된 프로펠러는 WIG선의 양력을 급격히 향상시키며 정적안정성을 향상시킴을 알았다. 따라서 적절한 프로펠러의 크기, 부착위치 및 회전수의 선택이 PARWIG선의 성능향상을 위해 필수적임을 알았다.

  • PDF

Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine

  • Schmucker, Hannes;Flemming, Felix;Coulson, Stuart
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.342-351
    • /
    • 2010
  • During the operation of a hydro turbine the fluid mechanical pressure loading on the turbine blades provides the driving torque on the turbine shaft. This fluid loading results in a structural load on the component which in turn causes the turbine blade to deflect. Classically, these mechanical stresses and deflections are calculated by means of finite element analysis (FEA) which applies the pressure distribution on the blade surface calculated by computational fluid dynamics (CFD) as a major boundary condition. Such an approach can be seen as a one-way coupled simulation of the fluid structure interaction (FSI) problem. In this analysis the reverse influence of the deformation on the fluid is generally neglected. Especially in axial machines the blade deformation can result in a significant impact on the turbine performance. The present paper analyzes this influence by means of fully two-way coupled FSI simulations of a propeller turbine utilizing two different approaches. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Classic for the structure mechanical simulation. A detailed comparison of the results for various blade stiffness by means of changing Young's Modulus are presented. The influence of the blade deformation on the runner discharge and performance will be discussed and shows for the configuration investigated no significant influence under normal structural conditions. This study also highlights that a two-way coupled fluid structure interaction simulation of a real engineering configuration is still a challenging task for today's commercially available simulation tools.