• 제목/요약/키워드: vortex interaction

검색결과 363건 처리시간 0.025초

지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part II. 수동 제어 기법 연구 (Passive Control of the Vortex Shedding past a Square Cylinder with Moving Ground Part II Study of Passive Control Technique)

  • 김태윤;이보성;이동호
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.8-14
    • /
    • 2005
  • 지면 근처에 존재하는 뭉뚝한 물체의 유동장 이해는 자동차 및 항공 업계에 매우 중요한 분야이다. 이를 위해 비압축성 평균 Navier-Stokes 방정식에 $\varepsilon{-SST}$ 난류 모델을 적용하여 정사각주와 이동 지면의 간극 유동을 해석하였다. 비정상 진동을 억제하기 위하여 사각주 하부에 수직/수평의 펜스 설치 효과를 연구하였다. 지면이 운동할 경우에는 지면의 박리 전단층의 강도가 약화되어 사각주 상/하부의 박리 전단층 상호 작용을 촉진시키므로 고정 지면에 비하여 더 낮은 간극에서도 와류 배출이 발생한다.

프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석 (CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction)

  • 박현정;김기섭;서성부;박일룡
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Effects of Squealer Rim Height on Aerodynamic Losses Downstream of a High-Turning Turbine Rotor Blade

  • Lee, Sang-Woo;Chae, Byoung-Joo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.160-167
    • /
    • 2008
  • The effects of squealer rim height on three-dimensional flows and aerodynamic losses downstream of a high-turning turbine rotor blade have been investigated for a typical tip gap-to-chord ratio of h/c=2.0%. The squealer rim height-to-chord ratio is changed to be $h_{st}/c$=0.00(plane tip), 1.37, 2.75, 5.51, and 8.26%. Results show that as $h_{st}/c$ increases, the tip leakage vortex tends to be weakened and the interaction between the tip leakage vortex and the passage vortex becomes less severe. The squealer rim height plays an important role in the reduction of aerodynamic loss when $h_{st}/c{\leq}2.75%$. In the case of $h_{st}/c{\geq}5.51%$, higher squealer rim cannot provide an effective reduction in aerodynamic loss. The aerodynamic loss reduction by increasing $h_{st}/c$ is limited only to the near-tip region within a quarter of the span from the casing wall.

  • PDF

An Unstructured Mesh Technique for Rotor Aerodynamics

  • Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.24-25
    • /
    • 2006
  • An unstructured mesh method has been developed for the simulation of steady and time-accurate flows around helicopter rotors. A dynamic and quasi-unsteady solution-adaptive mesh refinement technique was adopted for the enhancement of the solution accuracy in the local region of interest involving highly vortical flows. Applications were made to the 2-D blade-vortex interaction aerodynamics and the 3-D rotor blades in hover. The interaction between the rotor and the airframe in forward flight was investigated by introducing an overset mesh technique.

  • PDF

과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정 (Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique)

  • 홍철현;양장식;이기백
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

축류 압축기내의 2차원 유동 특성 (Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor)

  • 홍성훈;백제현
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

축기울기에 따른 DPS 스러스터와 선체의 상호간섭 수치해석 (NUMERICAL STUDY ON DPS THRUSTER-HULL INTERACTION WITH DIFFERENT AXIS TILTING ANGLE)

  • 진두화;이상욱
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.72-77
    • /
    • 2016
  • In this study, effects of thurster axis tilting angle on the thruster-hull interaction and propulsion performance in a dynamic positioning system of offshore plant are numerically investigated. Straight and 7-degree tilted downward thruster models as a form of ducted propeller are considered. For numerical simulations, Reynolds averaged Navier-Stokes equations with SST turbulence model are solved by using STAR-CCM+. Results show that thruster-hull interaction is reduced in 7-degree tilted thruster model with lower vortex strength between thruster and hull bottom, although the propulsion performance does not have noticeable difference in a bollard condition.

유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석 (Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder)

  • 이희범;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF