• Title/Summary/Keyword: von $K{\acute{a}}rm{\acute{a}}n$ assumptions

Search Result 3, Processing Time 0.014 seconds

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.