• Title/Summary/Keyword: voluntary EMG

Search Result 183, Processing Time 0.02 seconds

A Biomechanical Comparative Analysis of the Multi-Radius Total Knee Arthroplastry System for Go up Stair and Go down Stair (계단 오르기와 내리기 동안 다축범위(multi-radius) 무릎인공관절 수술자의 운동역학적 비교분석)

  • Jin, Young-Wan;Yoo, Byung-In;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • The primary purpose of a TKA is to restore normal knee function Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from climbing stairs; (b) provide adequate knee joint stability. A 16-channel MyoResearch XP EMG system was used to collect the differential input surface electromyography signals VM, VL, RF, BF, ST during climbing/descending stair tests. A Peak Motion Measurement System was used to collect the kinematic and kinetic data. AKIN-COM Ill isokinetic dynamometer was used for EMG of VM, VL, RF, BF and ST during maximal voluntary contraction. I Quadriceps EMG results for the VM of the passed 1year group limb demonstrated significant less RMS EMG than that of the passed 3year group limb $60^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The VL of the passed 1year group limb also demonstrated significants less RMS EMG than that of the passed 3year group limb from $60^{\circ}-45^{\circ}$ of knee flexion(p<0.05). Similar to the VM and VL, the RF of the passed 1year group limb showed less RMS EMG than that of the passed 3year group limb from $60^{\circ}-30^{\circ}$ do knee flexion(p<0.05). Hamstring EMG results for the BF of the passed 1year group limb demonstrated less RMS EMG than that of the passed 3year group limb from $75^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The passed 1year group limb tended to have less ADD displacement(p<0.071) than that of the passed 3year group limb. There was no significant difference of the ABD displacement between the passed 1year group and the passed 3year group limbs(p<0.73). The passed 3year group used compensatory adaptation movement strategies to compensate for the strength deficit of passed 3year group limbs. The passed 3year group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. The passe 3year group limb might have an unstable knee joint in the medio-Iateral direction during the climbing/descending by showing a tendency of more ADD displacement and greater hamming co-activation EMG than the passed 1year group limbs. The TKA design was not able to help the knee joint to produce adequate knee extension moment with less quadriceps muscle effort. I think that old man needs continuous exercise for muscle strength.

Electromyography Triggered Training System for Wrist Rehabilitation (근전도 트리거 손목 재활 훈련 시스템 개발)

  • Kim, Younghoon;Le, DuyKhoa;Chee, Youngjoon;Ahn, Kyoungkwan;Hwang, Changho
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.148-155
    • /
    • 2013
  • This study is about the development of the wrist rehabilitation system for the patient who has limited capability of movement after stroke. Electromyography triggered training system (ETTS) can play the role between complete passive training and patient activating training system. Surface EMG was measured on pronator teres muscle and biceps brachii muscle for wrist pronation and supination. Our system detects whether the subject makes muscular effort for pronation or supination or nothing in every 50 ms. When the effort level exceeds the preset percentage of maximal voluntary contraction, the motor rotates according to the direction of the intention of the subject. EMG triggers the motor rotation for the wrist rehabilitation training until the preset angle. To evaluate its performance, the maximum voluntary contraction level was measured for 4 subjects at first. With the audio-visual instruction to rotate the wrist (pronation or supination) the subjects made effort to follow the instruction. After calculating root mean square (RMS) for 50 ms, the controller determines whether there was muscular effort to rotate while holding the motor. When there was an effort to rotate, the controller rotates the motor 0.8 degree. By comparing the RMS values from two channels of EMG, the controller determines the rotational direction. The onset delay is $0.76{\pm}0.24$ s and offset delay is $0.65{\pm}0.22$ s for pronation. For supination the onset delay is $1.24{\pm}0.41$ s and offset delay is $0.77{\pm}0.22$ s. The system responded fast enough to be used for rehabilitation training. The controller perceived the direction of rotation 100% correctly for the pronation and 97.5% correctly for supination. ETTS was developed and the fundamental functions were validated for normal subjects. The clinical validation should be done with patients for real world application. With ETTS, the subjects can train voluntarily over the limitation of the range of motion which increases the effectiveness of the rehabilitation training.

Effects of Combinational Posture of Shoulder, Elbow and Wrist on Grip Strength and Muscle Activity (어깨, 팔꿈치, 손목의 자세에 따른 최대악력과 근육활동에 관한 연구)

  • Kim, Tae Hyung;Jung, Seung Rae;Kang, Sung Sik;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • This study aimed to analyze postures that were frequently conducted in manufacturing industry. To find grip strength and muscle activities of each posture, Maximum Voluntary Contraction (MVC) and ElectroMyoGraphy (EMG) were measured. Based on the results of this study, the most appropriate posture could be suggested and used as a basic information for preventing musculoskeletal disorders. Most work-related musculoskeletal disorders have been occurred in the fields of manufacturing industry. According to previous studies, it was reported that the rate of musculoskeletal diseases of upper extremity was higher than that of other body parts. Accordingly, there were many studies about discomfort and grip strength of upper extremity. However, these studies dealt with single selection of wrist, elbow and shoulder. So, it was insufficient for comprehensive studies about upper extremity. And in order to improve the work posture, the physiological changes being generated by the combination of wrist, elbow and shoulder postures should be observed and analyzed. In order to conduct this study, thirty university students who had no records of MSDs involved were recruited. Independent variables were postures of wrist(pronation, neutral, supination), postures of elbow(flexion $45^{\circ}$, $90^{\circ}$) and postures of shoulder(flexion $0^{\circ}$, $90^{\circ}$). And dependent variables were MVC values and EMG values. Jamar dynamometer and TeleMyo 2400T G2 was used to measure MVC and EMG. MVC and EMG for 12 postures were measured for three second and for three times. Experiment was performed randomly. A 10 minutes rest period was provided after each t. To measure muscle load, the EMG signals of eight muscles (Biceps, Medial triceps, Lateral triceps, Brachioradialis, Extensor carpi ulnaris, Extensor carpi radialis, Flexor carpi ulnaris and Flexor carpi radialis) were evaluated. MVC values and EMG values were analyzed using Minitab ver. 14. The results showed that MVC value was the highest at shoulder $0^{\circ}$, elbow $45^{\circ}$ and wrist supination. In case of wrist postures, MVC of supination is the highest. In case of elbow and shoulder postures, MVC of flexion $45^{\circ}$ and $0^{\circ}$ was the highest. It was found that there were interaction between wrist and elbow posture under shoulder flexion and between shoulder and wrist under elbow flexion $45^{\circ}$. In case of the angle of shoulder $0^{\circ}$, elbow $45^{\circ}$ and wrist supination, the EMG values of four muscles(Medial Triceps, Extensor carpi ulnaris, Extensor carpi radialis, Flexor carpi ulnaris) were the highest. Based on this study, it is worth to note that the combination postures of upper extremity have a large impact on the MVC and EMG. The optimal condition upper extremity was shoulder flexion $0^{\circ}$, elbow flexion $45^{\circ}$ and wrist supination for preventing work-related musculoskeletal disease.

Effects of Hip Internal Rotation on Knee Extensor and Hip Abductor Electromyographic Activity During Stair Up and Down (계단 오르고 내리기시 엉덩관절 내회전이 무릎관절 폄근과 엉덩관절 벌림근 근활성도에 미치는 영향)

  • Oh, Jae-Seap;Kwan, Oh-Yun;Yi, Chung-Hwi;Jean, Hye-Sean
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.54-63
    • /
    • 2008
  • The purpose of this study was to examine the effect of the hip internal rotation on knee extensor and hip abductor electromyographic (EMG) activity during stair up and stair down mobility. Eighteen healthy subjects were recruited. All subjects performed stair up and down movements on a step of 30cm height while maintaining the hip in neutral (condition 1) and hip in internal rotation (condition 2). Surface EMG activity was recorded from five muscles (gluteus maximus, vastus lateralis (VL), vastus medialis oblique (VMO), posterior gluteus medius (Gmed), and tensor fascia latae (TFU)) and hip internal rotation angle was measured using a three dimensional motion analysis system The time period for stair up and down was normalized using the MatLab 6.5 program, and EMG activity was normalized to the value of maximal voluntary isometric contraction (%MVIC). The EMG activities according to the hip rotation (neutral or internal rotation) during the entire time period of stair up and down in each phase were compared using a paired t-test. During the entire period of stair up, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). During the entire period of stair down, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). However, the EMG activities of the other muscles were not significantly different between the conditions (p>.05). These results suggest that the stair up and down maintaining hip internal rotation was could be a contributing factor on patellar lateral tracking.

  • PDF

The Comparison of Trunk Muscle Activities During Sling and Mat Exercise (요부 안정화 운동에 따른 몸통 근육들의 근활성도 비교)

  • Choi, Hee-Soo;Kwon, Oh-Yun;Yi, Chung-Hwi;Jeon, Hye-Seon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose of this study was to verify the most effective spinal stabilization exercises program by comparing the activities of muscles contributing to spinal stabilization during four types of exercises using a sling and a mat. Twenty healthy males were recruited and each subjects performed four types of exercises. Exercise 1 was performed in a quadruped position with the subjects lifting the left arm and the opposite leg on the mat. Exercise 2 was performed in a prone position while holding a sling with the right hand and the left knee was fully extended while lifting the left arm and right leg. Exercise 3 was performed in quadruped position while holding a sling with one the right hand and lifting the opposite arm and leg. In exercise 4, subjects were instructed to maintain a balance push-up position while holding slings with both hands in 10 cm forward reaching with extended elbows. Electromyographic(EMG) activities were recorded from the multifidus, external oblique, internal oblique, abdominal rectus, and erector spinalis muscles during the exercises. The EMG amplitude of each muscle was normalized to the amplitude in the maximal voluntary isometric contraction (MVIC) of each muscle. Repeated ANOVA and Bonferroni's tests were used to compare the differences in the muscle activity according to the types of exercise. The EMG amplitudes of all the muscles were significantly different according to the types of exercises (p<.05). The highest EMG activities of each muscle was as follow; multifidus was 73.38%MVIC in exercise 3, the erector spinalis was 40.03%MVIC in exercise 3, the external oblique was 135.88%MVIC in exercise 4, the internal oblique was 128.60%MVIC in exercise 4, and the rectus abdominalis was 95.24%MVIC in Exercise 4. The types of exercises showed a significant difference in composition rate of EMG amplitudes of each muscle (p<.05). EMG composition rate of the multifidus was high in exercise 1 and 3. However, EMG composition rates of the external oblique, internal oblique, and the rectus abdominals were high in exercise 2 and 4. These results showed differences in EMG activities of muscles contributing to trunk stabilization during different therapeutic exercises. Therefore, the type of exercise should be carefully selected to effectively strengthen a specific trunk stabilizer.

  • PDF

Comparison of the Muscle Activities in the Lower Extremities during Weight-bearing Exercises

  • Kim, Eun Ja;Hwang, Byong Yong;Kim, Mi Sun;Kim, Ik Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • Purpose: Weight-bearing exercise is a type of physical exercise that is widely performed for rehabilitation after acquiring nervous-system diseases or sports-related injuries. It is one of the most commonly prescribed rehabilitation programs for strengthing of the lower extremities. Weight-bearing exercise is important for the conduct of such activity of daily living (ADLs) as walking, and up and down the stairs. The purpose of this study was to investigate the muscle activities during one-leg standing and one-leg squatting, the two most representative weight-bearing exercises. Methods: A total of 43 elderly (60~70 years old) males who could perform weight-bearing exercises were included in the study. During the one-leg standing and one-leg squatting, the electromyographic (EMG) signals were quantified as maximum voluntary isometric contraction (%MVIC) using surface EMG, and then the muscle activities of the lower extremities during the two exercises were compared. For statistical analysis, an independent sample t-test and one-way ANOVA were performed. Results: The results of the study are as follows: (1) in the one-leg standing, the activity of the gluteus medius was the greatest among the vastus medialis, vastus lateralis, bicep femoris, (2) in the one-leg squatting, the activity of the vastus medialis was the greatest; and (3) the activity was greater in the one-leg squatting than in the single-leg standing exercise. Conclusion: The one-leg standing and squatting exercises are suitable for strengthening the muscles for the prevention of and recovery from lower-extremity injury, and for functional ADL in elderly people. In addition, dynamic exercise was shown to be more effective than static exercise for strengthening the muscles.

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.

Effect of Shoulder Position on Scapular Muscle Activity during Scapular Protraction

  • Yun, Sung Joon;Kim, Moon-Hwan;Weon, Jong-Hyuck
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Purpose: This study was to evaluate several tasks performed at a high intensity in terms of their ability to elicit EMG activity in the serratus anterior by comparing the EMG activities of the serratus anterior, upper trapezius, and lower trapezius muscles during six tasks combined shoulder flexion with rotation. Methods: Fifteen healthy males were recruited to this study. Each subject was instructed to assume a sitting position without back support and asked to flex (90° or 120°) the right shoulder and protract the scapula in the sagittal plane with maximal external rotation; to assume a neutral position; or to internally rotate the glenohumeral joint. The EMG data were collected from the serratus anterior (SA), upper trapezius (UT), and lower trapezius (LT) muscles were normalized to maximum voluntary isometric contraction. The UT/LT and UT/SA muscle activity ratios in each task were assessed by calculating the surface EMG. Data were analyzed by two-way repeated-measures analysis of variance, with the level of significance set at p<0.05. Results: The results of this study, shoulder flexion with external rotation resulted in low upper trapezius/serratus anterior and upper trapezius/lower trapezius ratios and a relatively high level of serratus anterior activation. Conclusion: Shoulder flexion with external rotation used herein may be considered as important for clinical interventions aimed at selectively increasing SA strengthen and clinical selection of exercises for improving glenohumeral joint and scapulothoracic control.

Characteristic of the Regression Lines for EMG Median Frequency Data Based on the Period of Regression Analysis During Fatiguing Isotonic Exercise (등장성 운동 시 회귀분석기간에 따른 근전도 중앙주파수 회귀직선의 특징)

  • Kim, Yu-Mi;Cho, Sang-Hyun;Lee, Young-Hee
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2001
  • Many studies have shown that the initial median frequency (MDF) and slope correlate with the muscle fiber composition. This study tested the hypothesis that the initial MDF and slope are fixed, regardless of the interval at which data are collected. MDF data using moving fast Fourier transformation of EMG signals, following local fatigue induced by isotonic exercise, were obtained. An inverse FFT was used to eliminate noise, and characteristic decreasing regression lines were obtained. The regression analysis was done in three different periods, the first one third, first half, and full period, looking at variance in the initial MDF, slope, and fatigue index. Data from surface EMG signals during fatiguing isotonic exercise of the biceps brachii and vastus lateralis in 20 normal subjects were collected. The loads tested were 30% and 60% maximum voluntary contraction (MVC) in the biceps brachii and 40% and 80% MVC in the vastus lateralis. The rate was 25 flexions per minute. There were no significant differences in the initial MDF or slope during the early or full periods of the regression, but there was a significant difference in the fatigue index. Therefore, to observe the change in the initial MDF and slope of the MDF regression line during isotonic exercise, this study suggest that only the early interval need to be observed.

  • PDF

Effects of Manual Postural Correction on the Trunk and Hip Muscle Activities During Bridging Exercises (도수적 자세교정이 슬링을 이용한 교각운동 시 체간과 하지 근육의 근활성도에 미치는 영향)

  • Kim, So-Young;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.38-44
    • /
    • 2014
  • The aim of this study was to investigate the effects of different postural correction in the electromyographic (EMG) activity of the trunk and hip muscles during bridging exercises. Twenty-four healthy subjects volunteered for this study. The muscle activity was recorded with surface electrodes over the erector spinae, multifidus, gluteus maximus (GM), and hamstring (Ham) muscles; it was measured by using surface EMG equipment under the following 3 experimental conditions: manual postural correction, verbal correction, and no correction. The maximal voluntary isometric contraction (MVIC) was determined for each muscle group in order to represent each exercise as a percentage of MVIC and allow for standardized comparison between subjects. A one-way analysis of variance was used to determine significant differences in the EMG activities of each muscle between the 3 experimental groups. During bridging exercises, the manual postural correction on normalized EMG activity of the GM muscle during manual guiding was significantly higher than during verbal guiding and without guiding (p<.05). Furthermore, the GM/Ham ratio was significantly higher during manual guiding than during verbal guiding and without guiding (p<.05). These findings suggest that the activities of the hip and trunk muscles may be favorably modified with manual guiding during bridging exercises.