• Title/Summary/Keyword: volumetric productivity

Search Result 69, Processing Time 0.024 seconds

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.430-437
    • /
    • 2011
  • The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

Lipase Activity and Tacrolimus Production in Streptomyces clavuligerus CKD 1119 Mutant Strains

  • Kim, Hyung-Soo;Park, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1638-1644
    • /
    • 2007
  • The effect of carbon sources on tacrolimus production by a mutant strain of Streptomyces clavuligerus CKD 1119, an isolate from soil, was examined. Among the carbohydrates and oils tested in this work, a mixed carbon source of soluble starch and com oil was the best. An analysis of the culture kinetics also showed that, in contrast to the carbohydrates, the com oil was consumed later in the antibiotic production phase, implying that the oil substrate was the principal carbon source for the biosynthesis of tacrolimus, and this was directly proven by experiments using $^{14}C$-glucose and $^{14}C$-oleate substrates. Furthermore, com oil induced the formation of lipase by the mutant strain, whereas the addition of glucose significantly repressed lipase activity. The lipase activity exhibited by the FK-506-overproducing mutants was also observed to be directly proportional to their tacrolimus yield, indicating that a high lipase activity is itself a crucial factor for tacrolimus production. A feasibility study with a 200-1 pilot-scale fermentor and the best strain (Tc-XII-15322) identified in this work revealed a high volumetric and specific productivity of about 495 mg/l and 0.34 mg/mg dry mycelium, respectively.

Continuous Production of Fructose-Syrups from Inulin by Immobilized Inulinase from Recombinant Saccharomyces cerevisiae

  • Kim, Byung-Woo;Kim, Han-Woo;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 1997
  • Recombinant exoinulinase was partially purified form the culture supernatant of S.cerevisiae by(NH4)2SO4 precipitation and PEG treatment. The purfied inulinase was immobilized onto Amino-cellulofine with glutaraldeyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 6$0^{\circ}C$, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 6$0^{\circ}C$. 100% of enzyme activity was observed even after incubation for 24 hr at 6$0^{\circ}C$. In the operation of a packed-bed reactor containing 412U inulinase, dahalia inulin of 7.5%(w/w) concentration was completely hydrolyzed at flow rate of 2.0mL/min at 6$0^{\circ}C$, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0mL/min flow rate with 2.5% inulin at 6$0^{\circ}C$, the reactor was successfully operated over 30 days without loss ofinulinase activity.

  • PDF

Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정)

  • 이재종;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

Candida magnoliae에 의한 erythritol 생산을 위한 유가식 공정의 개발

  • Park, Chang-Yeol;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.53-56
    • /
    • 2000
  • Two-stage fed-batch culture was peformed to improve the volumetric productivity of erythritol. In the growth phase dissolved oxygen was maintained to 20% and the feed medium was automatically supplied to the fermenter by pH-stat mode. The cell yield was 0.76 g-cell/g-glucose. In two-stage fed-batch culture, 41% of total erythritol conversion yield with 187 g/L of erythritol concentration and 2.79 g/L-h of maximum erythritol Productivity were obtained when 400 g/L of glucose was directly added in the form of non-sterile powder at production phase. The erythritol productivity increased in parallel with cell mass. The metabolic shift in the biosynthetic pathway of erythritol was caused by dissolved oxygen concentration. The production of gluconic acid was observed when the dissolved oxygen in the medium was maintained over 40% during the production phase, whereas the dissolved oxygen concentration lower than 40% caused the production of citric acid. But the butyric acid was produced independently with dissolved oxygen concentration in the medium. The production of organic acids such as gluconic acid, citric acid, and butyric acid was decreased by addition of mineral salts.

  • PDF

Implementation of Remote Monitoring Scenario using CDMA Short Message Service for Protected Crop Production Environment

  • Bae, Keun-Soo;Chung, Sun-Ok;Kim, Ki-Dae;Hur, Seung-Oh;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Protected vegetable production area is greater than 26% of the total vegetable production area in Korea, and portion of protected production area is increasing for flowers and fruits. To secure stable productivity and profitability, continuous and intensive monitoring and control of protected crop production environment is critical, which is labor- and time-consuming. Failure to maintain proper environmental conditions (e.g., light, temperature, humidity) leads to significant damage to crop growth and quality, therefore farmers should visit or be present close to the production area. To overcome these problems, application of remote monitoring and control of crop production environment has been increasing. Wireless monitoring and control systems have used CDMA, internet, and smart phone communications. Levels of technology adoption are different for farmers' needs for their cropping systems. In this paper, potential of wireless remote monitoring of protected agricultural environment using CDMA SMS text messages was reported. Monitoring variables were outside weather (precipitation, wind direction and velocity, temperature, and humidity), inside ambient condition (temperature, humidity, $CO_2$ level, and light intensity), irrigation status (irrigation flow rate and pressure), and soil condition (volumetric water content and matric potential). Scenarios and data formats for environment monitoring were devised, tested, and compared. Results of this study would provide useful information for adoption of wireless remote monitoring techniques by farmers.

Development of a Pelletizing System of Fermented TMR for Pig Feeding

  • Cha, Jaeyoon;Ali, Mohammod;Hong, Young Sin;Yu, Byeong Kee;Lee, Sunghyun;Seonwoo, Hoon;Kim, Hyuck Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Purpose: Fermented feedstuffs have been found to improve productivity, reduce manure odor, and increase immunity. However, because there is not a commercialized pelletizing system for fermented total mixed ration (TMR) for pig feeding in Korea, a pelletizing system using TMR fermented feed was developed. Methods: The particle size, density, and volumetric density of the TMR feeds used in the test were measured. The pellet durability index (PDI, %) value of the pelletized TMR feed based on its moisture content, and the amount of pellet production based on the rotation speed of the compression roller were measured. Results: The test materials, TMR1 and TMR2, were approximately compressed to 387 kg/m3 with 18.2% (w.b.) and 544 kg/m3 with 22.2% (w.b.), respectively. Throughout this pellet molding test, the moisture content from 15 to 20% (w.b.) of mixture feedstuffs, including fermented forage, could be used for pellet molding. Based on the results, a small-scale pellet molding system of fermented TMR was designed and manufactured for pig farms. As rotation speed increased, the throughput increased, whereas the moisture content decreased by approximately 2% (w.b.) because of pellet molding. The best yield of pellets with 94.2% PDI was of 536 kg/h at 135 rpm rotation speed. Conclusions: Although the throughput of the prototype increased as the rotation speed increased, it was difficult to operate because of the greater noise and the lower PDI (%) at the higher rotation speed of the pellet molding rotor. It was found that the best production of pellets using the prototype was 536 kg/h having a PDI of 94.2% or more at a rotation speed of 135 rpm.

재조합 단백질 생산을 위한 식물세포 고농도 배양과 기체조성에 따른 영향

  • Lee, Sang-Yun;Jeon, Su-Hwan;Min, Byeong-Hyeok;Heo, Won;Jo, Gyu-Heon;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.425-428
    • /
    • 2000
  • To enhance the productivity of recombinant protein, ${\beta} -glucuronidase(GUS)$, by transgenic Nicotiana suspensions, perfusion culture was carried out in a 5-L stirred tank bioreactor. Maximum cell density of 20.0 gDCW/L was obtained and GUS activity was noticeably affected by medium composition, such as salt concentration. Effect of headspace purging by $CO_2-enriched$ air was also investigated. Aeration of $CO_2(5%)-enriched$ air with 0.2 vvm significantly promoted the cell growth in lag pahse and increased volumetric GUS activity from 0.69 U/mL to 5.76 U/mL. In contrast, aeration of $CO_2(5%)-enriched$ air with 0.1 vvm did not affect the cell growth but enhanced the GUS acitivity from 3.24 to 5.25 U/mL at the 4th day.

  • PDF

Evaluation of L-Lactic Acid Production in Batch, Fed-batch, and Continuous Cultures of Rhizopus sp. MK-96-1196 Using an Airlift Bioreactor

  • Liu, Tiejun;Miura, Shigenobu;Arimura, Tomohiro;Tei, Min-Yi;Park, Enoch Y.;Okabe, Mitsuyasu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.522-527
    • /
    • 2005
  • Various processes which produce L-lactic acid using ammonia-tolerant mutant strain, Rhizopus sp. MK-96-1196, in a 3L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30g/L, more than 140 g/L of L-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200g/L of initial glucose concentration, 121g/L of L-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5g/L/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of $0.024\;h^{-1}$. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with high L-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production of L-lactic acid.