• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.063 seconds

Developed Inherent Strain Method Considering Phase Transformation of Mild Steel in Line Heating (선상가열시 강의 상변태를 고려한 개선된 고유변형도 기반의 등가하중법)

  • Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.65-74
    • /
    • 2004
  • The inherent strain method is known to be very efficient in predicting the deformation of steel plate by line heating. However, in the actual line heating process in shipyard, the rapid quenching changes the phase of steel. In this study, In order to consider additional effects under phase transformation, inherent strain regions were assumed to expand. Also, when calculating inherent strain, material properties of steel in heating and cooling are applied differently considering phase transformation. In this process, a new method which can reflect thermal volume expansion of martensite is suggested.8y the suggested method, it was possible to predict the plate deformations by line heating more precisely.

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Uniaxial Tension (유리 섬유 강화 열가소성 복합재료의 1축 인장시 재료거동에 대한 연구)

  • Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.96-101
    • /
    • 1996
  • Glass fiber reinforced polymeric composites hold considerable promise for increased use in low cost high volume applications because of the potential for processing by solid phase forming. Unfortunately, because of the wide variety of such materials, inherent bariability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Of particular importance is failure during processing due to localized necking instability, and it is this phenomenon that is primary focus of this study. The strain rate and temperature dependence is used to predict limiting tensile strains, based on Mackinack imperfection theory. Excellent correlation was obtained between theory and experiment, and the results are summarized in the limit strains as a function of temperature and stain rate.

  • PDF

Experimental Investigation on the Mechanial Behavior of Graphite/Epoxy Composites Under Hydrostatic Pressure (고압하에서의 적층복합재의 기계적 거동에 대한 실험적 고찰)

  • Rhee, K.Y.;Pae, K.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2431-2435
    • /
    • 1996
  • In order to determine the effects of hydrostatic pressure on the mechanical behavior of graphite fiber reinforced composites, the modulus, fracture stress(maximum stress), and fracture strain of graphite/epoxy composites have been determined as a function of pressure. Composite specimens used in this study were 90-deg unidirectional and had a 60% fiber volume fraction. Compressive tests under five different pressure levels were conducted. The result showed the modulus measured from as initial slope of stress-strain curve increased bilinearly with pressure with a break at 200 MPa. It was also found that fracture stress and fracture strain increased in a linear fashion with pressure.

Influence of External Reinforcement on Strain Characteristics of Critical Current in BSCCO Superconducting Tapes

  • Shin, Hyung-Seop;Kazumune Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.15-19
    • /
    • 2003
  • For the purpose of standardization of the critical current measurement, it is meaningful to describe how $I_{c}$ will behave as the stress/strain level changes. In this study, strain dependencies of the critical current $I_{c}$ in Ag-alloy sheathed multifilamentary Bi(2212) and Bi(2223) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering AgMgNi alloy tapes onto single or both sides of the sample. With the external reinforcement to the Bi(2212) tape, the strength of the tapes increased but the critical current at the strain free state, $I_{c0}$ decreased in some cases. The strain for onset of the $I_{c}$ degradation, $\varepsilon$$_{\irr}$, increased with an increase of the reinforcing volume and then saturated to a certain value. The effect of external reinforcement on the degradation of $I_{c}$ due to the bending strain in the Bi(2223) tape was also examined. Contrary to the expectation, it showed a significant $I_{c}$ degradation even at a small strain of 0.4 %. The observations of damage morphologies gave a good explanation to the $I_{c}$ behavior.c/ behavior.r.

An Evaluation of Basic Mechanical Performance for High Volume Fly Ash Concrete (다량 첨가된 플라이애시 콘크리트의 기초 역학적 성능 평가)

  • Yoo, Sung-Won;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.202-208
    • /
    • 2014
  • For evaluating basic structural behavior of HVFA (High Volume Fly Ash) concrete, several tests are performed considering different ratios of fly ash replacement and structural evaluation regarding compressive strength, elasticity modulus, stress-strain relationship, and bond strength is also performed. Test results show that elasticity modulus of HVFA concrete has close relationships with compressive strength and fly ash replacement ratio. The ultimate strain shows slight difference from domestic design code. On the other hand, there are no differences between general concrete and HVFA concrete for elasticity modulus and bond strength.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

Effects of Co Addition on Damping Capacity of Fe-23%Mn Martensite Alloy (Fe-23%Mn 마르텐사이트합금의 진공감쇠능에 미치는 Co 첨가의 영향)

  • Kong, Dong-Keon;Jun, Joong-Hwan;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 1997
  • Effect of Co content on the microstructure and damping capacity of Fe-23%Mn-X%Co alloy was studied. The volume fraction of ${\varepsilon}$ martensite of the alloy was increased with increasing Co content. The hardness was increased with lowering cooling temperature and increasing Co content in Fe-23%Mn-X%Co alloy, which is ascribed to the increase in ${\varepsilon}$ martensite content. The damping capacity of Fe-23%Mn-X%Co alloy was linearly increased with increasing the strain amplitude, and was constant regardless of Co content at the same volume fractions of ${\varepsilon}$ martensite when the low strain amplitudes ($1{\sim}3{\times}10^{-4}$) were applied, while the damping capacity with large strain amplitudes ($4{\sim}6{\times}10^{-4}$) became higher with increasing Co content at all valume fractions of ${\varepsilon}$.

  • PDF

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

EFFECT OF COMPOSITION ON STRAIN-INDUCED MARTENSITE TRANSFORMATION OF FeMnNiC ALLOYS FABRICATED BY POWDER METALLURGY

  • SEUNGGYU CHOI;JUNHYUB JEON;NAMHYUK SEO;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1001-1004
    • /
    • 2020
  • We investigated the austenite stability and mechanical properties in FeMnNiC alloy fabricated by spark plasma sintering. The addition of Mn, Ni, and C, which are known austenite stabilizing elements, increases its stability to a stable phase existing above 910℃ in pure iron; as a result, austenitic microstructure can be observed at room temperature, depending on the amounts of Mn, Ni, and C added. Depending on austenite stability and the volume fraction of austenite at a given temperature, strain-induced martensite transformation during plastic deformation may occur. Both stability and the volume fraction of austenite can be controlled by several factors, including chemical composition, grain size, dislocation density, and so on. The present study investigated the effect of carbon addition on austenite stability in FeMnNi alloys containing different Mn and Ni contents. Microstructural features and mechanical properties were analyzed with regard to austenite stability.

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control (2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상)

  • Park, C.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.