• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.029 seconds

Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites (강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Kim, In-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Shape Optimization for Multi-Connected Structures (다연결체 구조물에 대한 형상 최적화)

  • 한석영;배현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • The growth-strain method was used for shape optimization of multi-connected structures. It was verified that the growth-strain method is very effective for shape optimization of structures with only one free surface to be deformed. But it could not provide reasonable optimized shape for multi-connected structures, when the growth-strain method is applied as it is. The purpose of this study is to improve the growth-strain method for shape optimization of multi-connected two- and three- dimensional structures. In order to improve, the problems that occurred as the growth-strain method was applied to multi-connected structures were examined, and then the improved method was suggested. The effectiveness and practicality of the developed shape optimization system was verified by numerical examples.

  • PDF

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.

Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

  • Bautista, Zhierwinjay;Shin, Hyung-Seop;Mean, Byoung Jean;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.21-24
    • /
    • 2016
  • The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current ($I_c$) was measured at 77 K and self-field. Depending on whether the $I_c$ of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of $I_c$, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

The Usefulness of 4D Echocardiographic Modality for Assessing RV Affection in Uncontrolled Hypertensive Patients

  • Rehab M. Hamdy;Shaimaa A Habib;Layla A Mohamed;Ola H. Abd Elaziz
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 2022
  • BACKGROUND: In many cardiovascular disorders, the contractile performance of the right ventricle (RV) is the primary determinant of prognosis. For evaluating RV volumes and function, 4 dimensional (4D)-echocardiography has become common. This research used 2D and 4D modalities to assess RV contractile performance in hypertensive patients. METHODS: A total of 150 patients with essential hypertension were enrolled in this study, along with 75 age and sex-matched volunteers. Clinical evaluation and echocardiographic examination (including M-mode, tissue Doppler imaging, and 2D speckle tracking) were conducted on all participants. RV volumes, 4D-ejection fraction (EF), 4D-fractional area change (FAC), 4D-tricuspid annular plane systolic excursion (TAPSE), 4D-septal and free wall (FW) strain were all measured using 4D-echocardiography. RESULTS: Hypertensive patients showed 2D-RV systolic and diastolic dysfunction (including TAPSE, 2D-right ventricular global longitudinal strain, RV-myocardial performance index and average E/EaRV) and 4D-RV impairment (including right ventricular EF, FAC, RV strain and TAPSE, right ventricular end-diastolic volume and right ventricular end-systolic volume) compared to the control group. We verified the prevalence of RV systolic dysfunction in hypertension patients using the following parameters: 1) 15% of them had 2D-TAPSE < 17 mm vs. 40% by 4D-TAPSE; 2) 25% of them had 2D-GLS < 19% vs. 42% by 4D-septal strain and 35% by 4D FW strain; 3) 35% of hypertensive patients had 4D-EF < 45%; and finally; 4) 25% of hypertensive patients had 2D-FAC < 35% compared to 45% by 4D-FAC. CONCLUSIONS: The incidence of RV involvement was greater in 4D than in 2D-modality trans-thoracic echocardiography. We speculated that 4D-echocardiography with 4D-strain imaging would be more beneficial for examining RV morphology and function in hypertensive patients than 2D-echocardiography, since 4D-echocardiography could estimate RV volumes and function without making geometric assumptions.

Dynamic Recrystallization of Medium Carbon Steels (중탄소강의 동적 재결정에 관한 연구)

  • Kim S. I.;Han C. H.;Yoo Y. C.;Lee D. R.;Ju U. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.33-36
    • /
    • 2000
  • The dynamic recrystallization (DRX) of medium carbon steels (SCM 440 and POSMA45) was studied with torsion test in the temperature range of $900-1100^{\circ}C$ and the strain rate range of $5.0x10^{-2}\;-\;5.0x10^0/sec$. To establish the quantitative equations for DRX, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate ( ${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}\;=\; \theta$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\dot{\varepsilon}$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\varepsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction, the ${\varepsilon}_c$, ${\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steels at any deformation conditions.

  • PDF

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF