• Title/Summary/Keyword: volume shrinkage

Search Result 261, Processing Time 0.028 seconds

Drying Shrinkage of High-Volume Fly Ash Concrete (High-Volume 플라이애쉬 콘크리트의 건조수축특성)

  • 최석균;이광명;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.195-198
    • /
    • 1999
  • Fly ash is the most common artificial pozzolan, which is a material precipitated electrostatically from the exhaust gases of coal-fired power stations. Fly ash can be used as the supplementary material as well as the material for high performance concrete and hence, the development of high-volume fly ash concrete is imperative. In this study, the characteristics of drying shrinkage of high volume fly ash concrete is investigated. It is found from test results that as the replaced amount of fly ash in concrete is increased, drying shrinkage of concrete is reduced.

  • PDF

Drying Shrinkage of Concretes according to Different Volume-Surface Ratios and Aggregate Types (형상비 및 골재의 종류에 따른 콘크리트 시편의 건조수축특성 연구)

  • Yang, Sung-Chul;Ahn, Nam-Shik;Choi, Dong-Uk;Kang, Seoung-Min
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.109-121
    • /
    • 2004
  • This study was performed to investigate the characteristics of drying shrinkage for concrete slabs as a project for Korean pavement design procedure. According to the volume-surface ratios and aggregate types, the experiments have been executed for 252 days. In order to simulate the volume-surface ratio of a real concrete pavement slab, three-layer epoxy coating and wrapping were used to prevent the evaporation at the part of specimen surfaces. As a result of preliminary test, coating and wrapping method was identified as reliable for three months. According to the volume-surface ratio, the drying shrinkage of the concrete specimen using sandstone was measured 1.32 to 1.8 times higher than that of the limestone specimen. Comparing to the measured drying shrinkage strains and established ACI and CEB-FIP model equations, it turned out that those model equations were underestimated. Finally, considering the age and volume-surface ratios, the prediction equations of the drying shrinkage of concrete specimen were proposed through a multiple nonlinear regression analysis.

  • PDF

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

Estimation of Drying Shrinkage of High Volume Fly-Ash concrete Using Early Strength Improvement Admixture (초기강도 향상 혼화재를 사용한 플라이애시 다량치환 콘크리트의 건조수축 해석)

  • Park, Chun-Jin;Son, Ho-Jeong;Back, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.63-65
    • /
    • 2010
  • The purpose of the study was to analyze dry shrinkage of HVFAC (high volume fly ash concrete) with admixture to improve early strength. The results were as follows. In dry shrinkage of HVFAC with admixture to improve early strength, F3 had the lowest amount of dry shrinkage. The next is in order of Plain, F3-f15 and F3-f15r5. The study used index function modelfor analysis on dry shrinkage. Coefficient of determination was more than 0.97 in all mix, which made it possible to have a good estimation.

  • PDF

Mechanial and Drying Shrinkage Properties of Polypropylene Fiber Reinforced High Flow Concrete (폴리프로필렌 섬유보강 고유동 콘크리트의 역학적 및 건조수축 특성)

  • Noh , Kyung-Hee;Sung , Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.79-85
    • /
    • 2004
  • This study was performed to evalute mechanical and drying shrinkage properties of polypropylene fiber reinforced high flow concrete. The compressive strength and drying shrinkage ratio were increased with increasing the binder volume ratio and decreased with increasing the content of polypropylene fiber. The splitting tensile strength was increased with increasing the binder volume ratio and the content of polypropylene fiber. The flexural strength was increased with increasing the binder volume ratio and increased by the polypropylene fiber content 0.4%, but above the polypropylene fiber content 0.6% was decreased. This concrete can be used for high flow concrete.

Early-Age Shrinkage of Very-Early Strength Latex Modified Concrete (초속경라텍스개질콘크리트의 초기수축)

  • Lee Jung-Ho;Choi Pan-Gil;Choi Seung-Sic;Yun Kyong-Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.269-272
    • /
    • 2004
  • After concrete casts, temperature decent and shrinkage bring volume changes of concrete pavement. Microcracking and cracking in concrete pavement are caused by these volume changes. As a result, durability of concrete pavement is deteriorated. Recently, Very-Early Strength Latex Modified concrete(below:VESLMC) from the beginning of High-Way is used as urgent repair material for bridge deck. The advantage of VESLMC is that compressive and flexural strength at 3 hours age are 4.5MPa and 21MPa respectively. It allows the traffic to open in 3 hours. But, this material has the problem which is early-age shrinkage cracking caused by water self-dissipation with rapid hydration reaction and water evaporation with body dry. Unfortunately, until now, the research about early-age shrinkage of VESLMC leaves something to be desired. Therefore, the purpose of this study is to present the early-age shrinkage of VESLMC respect to latex contents and shrinkage ratio to maximum length change that can help field engineers' skill. Latex contents of 0, 5, 10, 15, $20\%$ in standard of same workability in VESLMC are selected by experimental variables. After initial set, shrinkage value was measured with 10mm LVDT for 3 days. The results of maximum shrinkage ratio were 0.019, 0.017, 0.023, $0.027\%$ respectively.

  • PDF

A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste (저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구)

  • Hyeon, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.