• Title/Summary/Keyword: voltage dependence

Search Result 441, Processing Time 0.023 seconds

Temperature dependence and Voltage dependence of Aramide Paper (아라미드계 절연지(Aramid paper)의 온도의존성과 전압의존성)

  • Park, Hyoung-Jun;Lee, Jong-Pil;Park, Hee-Doo;Sin, Jong-Yeol;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.465-468
    • /
    • 2004
  • In this paper, the properties of temperature dependence and voltage dependence of Aramid paper were studied to understand electrical characteristics, to be regarded as the excellent insulation. Aramid paper and pressboard had being applied various motor, generator. We used to Finite Elemental Method of simulation tool, and improved optimal insulating design of insulating Aramid according to calculated those.

  • PDF

Determination of the Dielectrophoretic Force on a Cell in a Micro Planar Electrode Structure

  • Park, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.66-71
    • /
    • 1997
  • The dielectrophoretic(DEP) force acting on a cell in an electric field is experimentally determined. A cell is accelerated by the DEP force in an electric field generated between micro planar electrodes. the position of the cell is measured and the velocity and acceleration of the cell are calculated based on the measured position data. The DE force is determined from the motion equation of a moving cell in suspension. The electrode structure is fabricated by micromachining technology and the height of electrodes is 1 $\mu\textrm{m}$. Radish cell and yeast are used in th experiments. In the case of radish cell, the DEP force increases as voltage or frequency(1MHz∼3MHz) increases. The voltage dependence can be explained that the DEP force increases when ▽│E│$^2$increases. The frequency dependence means that Re[x\ulcorner] of radish cell is maximized in a certain frequency. In the case of yeast, the DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force on a yeast does not vary when the frequency varies from 1MHz to 3MHz. This result coincides with the fact that the value of calculated Re[x\ulcorner] is constant in the test frequency range.

  • PDF

A Study on Radition-Induced Current in Insulating Oil during X-ray Irradiation (방사선(放射線) 조사(照射) 중(中) 절연유(絶緣油)의 유기전류(誘起電流)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • This study was measured the radiation-induced current - X-ray dose, dose rate, X-ray quality, time, temperature, electric field characteristics and the dependence of gap length in insulating oil under of D.C. Voltage before, during and after X-ray irradiation. The obtained results can be summarized as following. 1. The radiation - induced current is more the dependence of X-ray quality (tube voltage) than quantity (tube current), the dependence of quantity is appeared at the high than low X-.ay tube voltage. 2. The dependence of dose rate is appeared at the more dose rate, and ${\triangle}\;=\;0.64{\sim}0.74$. 3. The higher temperature of insulating oil and X-ray tube voltage (X-ray quality) is increased, at the low electric field, the more radiation-induced current. 4. $G_{eq}-G_{o}(={\triangle}G)$ is increased at the low than high temperature, high than low X-ray quality. 5. The dependence of temperature is appeared before than during X-ray irradiation. 6. The RIC saturation region is appeared at the high than low insulating oil temperature during (1000 V/cm above) than before (4000 V/cm above) X-ray irradiation.

  • PDF

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

Precise High Voltage Measurement System Using Ceramic Stack Element for Voltage Divider (분압용 세라믹 적층 소자를 이용하 정밀 고전압 계측 시스템)

  • 윤광희;류주현;박창엽;정영호;하복남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.396-401
    • /
    • 2000
  • In order to accurately measure the high voltage of 22.9[kV] power distribution lines we investigated the temperature dependence of measuring voltage on the number of stack layers in the voltage measurement system made from single and stack voltage divider capacitors (22, 44, 66 layers, respectively). Temperature coefficient of dielectric constant(TC$\varepsilon_{{\gamma}}$/)of voltage divider capacitors which were fabricated by BaTi $O_3$system ceramics showed the variations from -2.28% to +1.69% in the range of -25[$^{\circ}C$] ~50[$^{\circ}C$]) was decreased with increasing of stack number and the stack element of 66 layers showed the least error of $\pm$0.87%or of $\pm$0.87%.

  • PDF

Measurement and Analysis of Temperature Dependence for Current-Voltage Characteristics of Homogeneous Emitter and Selective Emitter Crystalline Silicon Solar Cells (Homogeneous 에미터와 Selective 에미터 결정질 실리콘 태양전지의 온도에 따른 전류-전압 특성 변화 측정 및 분석)

  • Nam, Yoon Chung;Park, Hyomin;Lee, Ji Eun;Kim, Soo Min;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.375-380
    • /
    • 2014
  • Solar cells exhibit different power outputs in different climates. In this study, the temperature dependence of open-circuit voltage(V-oc), short-circuit current(I-sc), fill factor(FF) and the efficiency of screen-printed single-crystal silicon solar cells were studied. One group was fabricated with homogeneously-doped emitters and another group was fabricated with selectively-doped emitters. While varying the temperature (25, 40, 60 and $80^{\circ}C$), the current-voltage characteristics of the cells were measured and the leakage currents extracted from the current-voltage curve. As the temperature increased, both the homogeneously-doped and selectively-doped emitters showed a slight increase in I-sc and a rapid degradation of V-oc. The FF and efficiency also decreased as temperature increased in both groups. The temperature coefficient for each factor was calculated. From the current-voltage curve, we found that the main cause of V-oc degradation was an increase in the intrinsic carrier concentration. The temperature coefficients of the two groups were compared, leading to the idea that structural effects could also affect the temperature dependence of current-voltage characteristics.

Correlation Analysis of the Dielectric Breakdown Voltage of Liquid Nitrogen (액체질소 절연파괴전압의 상관 분석)

  • Baek, Seung-Myeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.396-399
    • /
    • 2015
  • We analyzed the correlation between breakdown voltage(BDV) of liquid nitrogen(LN2) and factors. The chosen factors affecting the breakdown are the diameter of electrode, gap length, temperature of LN2, and pressure of LN2. The BDV of LN2 was increased with increasing the diameter, the gap length and the pressure. And The BDV of LN2 was increased with decreasing the temperature. However, correlation coefficient was different from each other depending on the situation. The BDV exhibited a very high correlation coefficient of 0.92227 to dependence on the diameter. And a very high correlation coefficient of 0.94980 to dependence on the pressure under sphere(D 7.5 mm)-plane electrode. When the pressure is applied, sphere-plane electrode is the correlation coefficient was higher than that of the needle-plane electrode. It shows the dependence of a temperature coefficient of -0.758290 ~ -0.39946 under needle-plane electrode.

A Study on the High Voltage Measurement using Stack element for Voltage Division (분압용 적층형 소자를 이용한 고전압 계측에 관한 연구)

  • 윤광희;이용우;류주현;박창엽;하복남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.319-322
    • /
    • 1999
  • In order to accurately measure the high voltage of 22.9[kV] power distribution lines, we investigated the temperature dependence of measuring voltage for single element and stack elements(22, 44, 66 layers, respectively). When one line voltage is 13, 20O[V], the error of measuring voltage with temperature(-25[$^{\circ}C$]~50[$^{\circ}C$]) was decreased with increasing of stack number and stack element with 66 layers was the least error of ${\pm}0.87%$.

  • PDF

Implementation of Stretched-Exponential Time Dependence of Threshold Voltage Shift in SPICE (Stretched-Exponential 형태의 문턱전압 이동 모델의 SPICE구현)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • Threshold voltage shift occurring during operation is implemented in a SPICE simulation tool. Among the shift models the stretched-exponential function model, which is frequently observed from both single-crystal silicon and thin-film transistors regardless of the nature of causes, is selected, adapted to transient simulation, and added to BSIM4 developed by BSIM Research Group at the University of California, Berkeley. The adaptation method used in this research is to select degradation and recovery models based on the comparison between the gate and threshold voltages. The threshold voltage shift is extracted from SPICE transient simulation and shows the stretched-exponential time dependence for both degradation and recovery situations. The implementation method developed in this research is not limited to the stretched-exponential function model and BSIM model. The proposed method enables to perform transient simulation with threshold voltage shift in situ and will help to verify the reliability of a circuit.