• 제목/요약/키워드: voltage constraints

검색결과 146건 처리시간 0.023초

열적용량과 전압안정도를 고려한 ATC 계산 방법에 관한 연구 (The ATC Calculation Method with Thermal Constraints and Voltage Stability Constraints)

  • 김재현
    • 조명전기설비학회논문지
    • /
    • 제21권2호
    • /
    • pp.86-93
    • /
    • 2007
  • 본 논문은 가용송전용량(ATC)를 계산하기 위한 두 가지 빠른 계산 기법을 제안한다. 이 방법들은 선로의 열적용량한계(Thermal ATC)와 전압 안정도한계(Voltage ATC)를 제약조건으로 ATC를 계산한다. 먼저 선로의 열적용량을 고려한 방법에서는 모선의 전력 변화에 대한 선로의 조류 감도인 PTDF와 n-1 상정사고를 고려한 LODF를 이용하였으며, 전압안정도를 고려한 방법에서는 2모선 등가 시스템을 이용하여 최대 전력을 구하는 방법을 이용하였다. 제안된 방법은 IEEE 30모선 계통에 적용하였으며 그 결과를 다른 방법과 비교하여 제안된 방법의 타당성을 입증하였다.

팬타그래프 전압제약조건을 고려한 AT급전계통 해석 (Analysis Of AT Feeding Systems Considering The Voltage Constraint Conditions Of The Pantagraph)

  • 문영현;김백
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.652-656
    • /
    • 2006
  • Constant load model is widely used for an electric train to perform the static analysis of AT (Auto Transformer) feeding systems. In this model, the train will be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However there must be some constraints imposed on the pantagraph voltage in actual operations. These constraints are established for the reason of protecting the feeding facilities from excessive rise of regenerative braking voltage or guaranteeing the minimum traction power of train. In normal operating situation, the pantagraph voltage of the train should be maintained within these limits. Keeping these facts in minds, we suggest new methods or analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do. The proposed methods are believed to contribute to the assessment of TCR-TSC for compensating reactive powers too.

배전계통에서의 최적 부하절체를 위한 전문가 시스템 (An Expert System for Optimal Load Transfer in Distribution Systems)

  • 문영현;최병윤;김세호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

전차선 전압제약조건을 고려한 AT 급전계통 해석 (Analysis of AT Feeding Systems considering the Voltage Constraint Conditions of the Catenary.)

  • 김백;정광우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.27-33
    • /
    • 2005
  • Constant load model is generally used for an electric train to perform the static analysis of AT feeding systems. In this model, the train will be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However there must be some voltage constraints on the catenary in actual operations. These constraints are established for the reason of protecting the feeding facilities from excessive rise of regenerative braking voltage or guaranteeing the minimum traction power of train. In normal operating situation, the pantagraph voltage of the train should be maintained within these limits. Keeping these facts in minds, we suggest new methods of analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do. The proposed methods are believed to contribute to the assessment of TCR-TSC for compensating reactive powers too.

  • PDF

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

선로사고 및 선로용량을 고려한 전력계통 최적운영에 관한 연구 (Study on the Calculation of the Optimal Power System Operation Considering Line Contingencies and Line Capacities)

  • 박영문;백영식;서보혁;신중린
    • 대한전기학회논문지
    • /
    • 제36권9호
    • /
    • pp.609-615
    • /
    • 1987
  • The optimal operation of power system is developed by alternately using real power dispatch and reactive power dispatch problem. The real power system scheduling process is formulated as an optimization problem with linear inequality constraints. A.C. loadflow method is used for the problem solution and line losses are considered. The constraints under consideration are generator power limits, load scehdling limits and line capacity limits. In solving the objective function the Dual Relaxation method is adopted. Tests indicate that the method is practical for real time application. The reactive power control problem uses the Dual Simplex Relaxation method as in the real scheduling case. Insted of minimizing the cost of power system, the objective is selected as to determine the highest possible voltage schedule. The constraints under consideration are the voltage limits at each node and the possibilities of supply or absobtion of reactive energy by generator units and the compensation facilities. Tests indicate that the method is practical for real time applications. The overall optimization methods developed in this paper proved to obtained fine results in minimizing object function compared with the method without using voltage control. And the overall voltage profiles were also improved.

  • PDF

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

배전 계통에서의 사고 복구를 위한 전문가 시스템 (An Expert System for Fault Restoration in Distribution System)

  • 최병윤;김세호;이윤섭;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.171-174
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults,operaters need to identify nelghboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer infault restoration. Also, it is considered the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss. The expert system is able to propose the optimal load transfer method by anallzing system states and considering constraints.

  • PDF

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구 (A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method)

  • 김재현;정성원;김양일
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.94-100
    • /
    • 2008
  • 가용송전용량(ATC)은 계통내의 한 지역에서 다른 지역까지 실제 전력을 증가시키는 것이다. 지금까지 ATC 계산은 대부분 정상상태에서 실행가능성을 주로 고려하여 계산되어 왔다. 하지만 ATC 평가시 과도안정도로 제약된 ATC 계산은 매우 중요한 부분이다. ATC 평가시에는 제약조건으로 열적용량, 전압 및 과도안정도로 제약된 상정사고(n-1)시 안전도 평가가 요구된다. 본 논문은 자코비안 행렬의 고유치를 이용하여 상정사고 우선순위를 선정하였고, 에너지 함수법을 이용하여 선로의 열적용량, 전압안정도 및 과도안정도를 고려한 ATC를 계산하였다.